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Abstract 

Background  Prediction models have gained immense importance in various fields for decision-making purposes. 
In the context of tennis, relying solely on the probability of winning a single match may not be sufficient for predict-
ing a player’s future performance or ranking. The performance of a tennis player is influenced by the timing of their 
matches throughout the year, necessitating the incorporation of time as a crucial factor. This study aims to focus 
on prediction models for performance indicators that can assist both tennis players and sports analysts in forecasting 
player standings in future matches.

Methodology  To predict player performance, this study employs a dynamic technique that analyzes the structure 
of performance using both linear and nonlinear time series models. A novel approach has been taken, comparing 
the performance of the non-linear Neural Network Auto-Regressive (NNAR) model with conventional stochastic linear 
and nonlinear models such as Auto-Regressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), 
and TBATS (Trigonometric Seasonal Decomposition Time Series).

Results  The study finds that the NNAR model outperforms all other competing models based on lower values 
of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This 
superiority in performance metrics suggests that the NNAR model is the most appropriate approach for predicting 
player performance in tennis. Additionally, the prediction results obtained from the NNAR model demonstrate narrow 
95% Confidence Intervals, indicating higher accuracy and reliability in the forecasts.

Conclusion  In conclusion, this study highlights the significance of incorporating time as a factor when predicting 
player performance in tennis. It emphasizes the potential benefits of using the NNAR model for forecasting future 
player standings in matches. The findings suggest that the NNAR model is a recommended approach compared 
to conventional models like ARIMA, ETS, and TBATS. By considering time as a crucial factor and employing the NNAR 
model, both tennis players and sports analysts can make more accurate predictions about player performance.
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Introduction
Sports performance prediction has significant implica-
tions for the development of scientific training methods 
that align with evolving trends in sports performance [1]. 
This enables athletes, coaches, schools, sports teams, and 
sports training institutions to reform physical education 
and training based on informed opinions. Accurately pre-
dicting sports achievement plays a vital role in improving 
sports training and teaching by uncovering regular fac-
tors and characteristics of human training [2]. Therefore, 
the prediction of sports performance has been a promi-
nent topic in sports research. However, accurately pre-
dicting a player’s performance using traditional methods 
is challenging due to the complex interactions among 
various influencing factors [3]. Consequently, studying 
sports performance prediction models holds great sig-
nificance in promoting scientific training and enhancing 
sports performance [4]. Sports, being a highly attractive 
activity in modern society, exert a profound and extensive 
influence on the development of sports culture, which 
in turn impacts other related cultures [5]. Deep neu-
ral networks (DNN) have been proposed as an alterna-
tive method for predicting sports performance, directly 
impacting training and preparation goals and facilitating 
the discovery of performance development rules [6–8]. 
The complexity of predicting sports performance arises 
from the numerous variables involved, including changes 
in human characteristics, age, and environmental fac-
tors [3]. Building sports performance prediction mod-
els requires multivariate and multi-parameter statistical 
analysis, incorporating topics such as statistics, informa-
tion processing, and modern mathematics. Selecting an 
appropriate and highly precise method is crucial for suc-
cessful forecasting.

Time series models have gained attention in various 
fields of life, including sports such as soccer, golf, cricket, 
and tennis, where accurate predictions of sports results 
have always fascinated the sporting world [9–13]. Mul-
timedia, social media, and television provide insightful 
coverage of sporting tournaments through predictions 
[14]. In recent years, predicting and modeling tennis 
match results, in particular, have received significant 
consideration [15, 16]. Experts have utilized various 
predictors in classification algorithms to forecast tennis 
match outcomes, including the application of the Brad-
ley Terry-type model in predicting outcomes for the top 
men’s professional ATP tour and the use of high-dimen-
sional models [17, 18]. Furthermore, experiments have 
explored the feasibility of modeling to forecast soccer 
players’ readiness to play and reduce sports injuries. A 
study focused on predicting readiness to play by utiliz-
ing a Long Short-Term Memory Recurrent Neural Net-
work (LSTM RNN) based on a dataset from two male 

high-division soccer teams in Norway. The study dem-
onstrated the value of this approach in predicting the 
reported training load, including positive and negative 
peaks [19].

Traditional methods of predicting sports performance 
suffer from drawbacks such as high computational costs 
and poor adaptive anti-interference of parameters, lead-
ing to low prediction accuracy. However, deep neural 
studies offer stable effectiveness, adaptability, and the 
ability to determine linear correspondences in uncertain 
input–output function mapping, making them widely 
used in various fields [20]. A study [21] established that 
neural network models provide more accurate predic-
tions of sports performance and better evaluation of 
physical quality development compared to traditional 
methods. This model brings great convenience to sports 
performance prediction, enhancing modeling efficiency 
and prediction accuracy. Previous studies have utilized 
conventional statistical models to describe key features 
of tennis matches and assess players’ abilities in various 
scenarios [22, 23]. These models have proven effective in 
constructing rankings, determining entry and seeding in 
tennis tournaments, providing match and tournament 
predictions, and testing the efficiency of betting markets 
[16]. The Bradley-Terry model is commonly used for sta-
tistical analysis of tennis matches [24]. Moreover, ATP 
rankings points have been employed to gauge the level of 
strength among tennis players [9, 25].

However, traditional methods for predicting sports 
outcomes overlook the presence of linear and non-linear 
patterns in players’ performance, resulting in low pre-
diction accuracy. In contrast, modern machine learning 
techniques such as NNAR incorporate both linear and 
non-linear patterns, making them more widely adopted. 
Hence, this study aims to establish a sports performance 
prediction model for tennis players using NNAR and 
analyze its reliability by comparing it with conventional 
linear time series techniques. The findings demonstrate 
that the NNAR-based performance prediction model 
outperforms traditional prediction methods in accu-
rately forecasting performance indicators. This model 
can significantly enhance the convenience of sports per-
formance prediction and further improve modeling effi-
ciency and prediction accuracy.

Data and Methods
The data used to model the performance of three tennis 
players was sourced from (https://​www.​ultim​atete​nniss​
tatis​tics.​com/​playe​rProf​ile?​playe​rId=​4742&​tab=​timel​
ine). For each player, the data range from 2004 to 2022 
was selected consisting of twenty sample points or size 
for each player and for each indicator. The primary per-
formance indicators chosen for each player included their 

https://www.ultimatetennisstatistics.com/playerProfile?playerId=4742&tab=timeline
https://www.ultimatetennisstatistics.com/playerProfile?playerId=4742&tab=timeline
https://www.ultimatetennisstatistics.com/playerProfile?playerId=4742&tab=timeline
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probability of winning, number of ACES, game domi-
nance, and double faults per year. These performance 
indicators were utilized as training datasets for modeling 
the neural network models. To compare the performance 
of conventional time series models and neural auto-
regressive (NNAR) models, the key performance indica-
tors were examined. The main assumption underlying 
these models was that the players would continue playing 
throughout the forecasted period of five years.

Methods for modelling and forecasting
The methodology used for time series modeling and 
forecasting involves obtaining meaningful statistical 
measures and characteristics of the time series data. The 
ARIMA model can be represented as ARIMA (p,d,q), 
where p represents the order of the autoregressive com-
ponent, d indicates the differenced trend, and q signifies 
the order of the moving average component. The equa-
tions representing the AR (p) and MA (q) time series 
models are as follows;

where Yt is observed or output value of time series,ϕ, and 
θ are the coefficients of AR and MA models respectively 
and εt shows the residual value at time t . The generalized 
form of ARMA model has the following expression;

where α shows the constant term, and εt−1 is the past 
residual noise term. The ARMA model can be converted 
into the ARIMA model which deals with the non-station-
ary time series. The non-stationary time series can be 
made stationary by differencing.

The modeling methodology has the following 
steps:

(1)	 Identification: The model identification process 
necessitates that the time series exhibits station-
arity, and that the model parameters remain inde-
pendent of time. Frequently, the time series does 
not possess the characteristics of white noise ini-
tially, thus requiring differencing to transform it 
into a similar pattern. To ascertain the stationarity 
of the series, we employ a statistical test known as 
the Augmented Dickey-Fuller (ADF) test, which 
assumes the null hypothesis that the series is non-
stationary. Once we have achieved stationarity in 
the series, we then employ graphical tools like the 

(1)Y t = ϕ1Y t−1 + ϕ2Y t−2 + · · · + ϕpY t−p + εt

(2)Y t = θ1εt−1 − θ2εt−2 − · · · − θqεt−q + εt

(3)Y t = α+ ϕ1Y t−1 + ϕ2Y t−2 + · · · + ϕpY t−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q

autocorrelation function (ACF) and partial autocor-
relation function (PACF) to ascertain the appropri-
ate order of the candidate model.

(2)	 Estimation: In the model estimation phase, we visu-
ally analyze the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) of the 
series in order to estimate the suitable candidate 
model for the dataset. Various combinations of can-
didate models are tested, and the final model is cho-
sen based on accuracy parameters criteria.

(3)	 Diagnostics: In the diagnostic checks, the selected 
candidate model undergoes evaluation using diag-
nostic tools such as mean absolute error (MAE), 
root mean square error (RMSE), and mean absolute 
percentage error (MAPE). The model that achieves 
the lowest values for these metrics is considered 
one of the best models for subsequent steps.

(4)	 Forecasting: In the forecasting step, we utilize the 
candidate model that satisfies all the aforemen-
tioned conditions to predict future values of the 
data series. Figure 1 shows the flowchart of all four 
steps explained for modeling the ARIMA model.

TBATS (Trigonometric Seasonal Decomposition Time 
Series)
TBATS is a nonlinear time series model which handles 
the data series having several seasonal patterns, i.e., the 
pattern of the data changes its behavior over time. The 

Trigonometric seasonality (TBATS) method is favored 
over BATS due to its ability to handle intricate and high-
frequency patterns. The TBATS model can be expressed 
as follow;

The seasonal component of the TBATS is given by;

where ξi = 2π j
ni

 and φ(i)
1  , φ(i)

2  are the seasonal smoothing.

Exponential Smoothing (ETS)
Exponential smoothing (ETS) can be applied to 
data having both systematic trends and seasonal 
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components. It is a significant forecasting methodology 
that can be applied as an alternative to ARIMA tech-
niques. Models were evaluated by using the R-package 
“ets()” function.

Neural Network Autoregressive Model (NNAR)
In modeling process, our focus was on the NNAR model as 
the machine learning model. We employed an automated 
selection method to determine the appropriate number of 
hidden layers. Systematically varying the number of hidden 
layers and neurons allowed us to obtain the most accurate 
models [26]. It is worth mentioning that neural networks 
lacking hidden units are essentially equivalent to linear 
statistical forecasting techniques [27]. Hidden units play a 
vital role in neural networks as they facilitate the mapping 
between input and output variables, while also introduc-
ing nonlinearity. Moreover, they aid in identifying patterns 
within the dataset [26]. In the context of time-series data, 
lagged values can be utilized as input data for a neural net-
work, similar to how they are employed in a linear autore-
gressive model.

An NNAR ( p,kp, k ) shows that hidden layer has pp  
delayed inputs and kk nodes. Moreover, NNAR ( p,0p, 0 ) 
model is the same as an ARIMA ( p,0p, 0 ), but without 
parameter limitations that assure stationarity. The expres-
sion is constructed in two stages. The K  activations come 
first. In the activation, A(k), k = 1, . . . ,K  , the hidden 
layer is calculated as a function of the input characteristics 
Xj = Xt−1, . . . ,Xt−p, with

where g is a previously defined nonlinear activation func-
tion. Each A(k) maybe seen as a separate hk(X) transfor-
mation of the unique characteristics. The output layer 
receives these K  instigations from the hidden layer

(6)A(k) = h(k) = g



wk0 +

p
�

j=1

wkjXj





In NNAR modeling, the sigmoid activation function, 
which is identical to the logistic regression function, is 
employed. This activation function serves the purpose of 
transforming a linear function into a probability ranging 
from 0 to 1. The sigmoid activation function can be rep-
resented by the following mathematical form as follow.

Figure  2 shows the structure of NNAR model with 
input, hidden, and output layers.

For analyzing the performance of all forecasting mod-
els, MAE, RMSE, and MAPE as the model selection cri-
teria. The best model will be chosen utilizing the RMSE, 
MAE, and MAPE criteria and forecasting. MAE stands 
for Mean Absolute Error. It is a metric used to measure 
the average difference between the predicted and actual 
values in a model. MAE is often used as a performance 
metric in machine learning and statistical modeling 
tasks. It provides a measure of the average magnitude 
of errors made by a model, regardless of their direction 
(positive or negative). The lower the MAE value, the 
better the model’s performance in terms of prediction 
accuracy. RMSE stands for Root Mean Square Error. It 
is another metric commonly used to evaluate the perfor-
mance of a regression model. RMSE measures the aver-
age magnitude of the differences between predicted and 
actual values, similar to MAE, but it gives more weight to 
large errors due to the squaring operation. MAPE stands 
for Mean Absolute Percentage Error. It is a metric used to 
assess the accuracy of a forecasting model, particularly in 
the context of time series analysis and demand forecast-
ing. MAPE measures the average percentage difference 
between the predicted and actual values. It provides a 

(7)f (X) = β0 +

K
∑

k=1

βkA(k)

(8)g(z) =
exp(z)

1+ exp(z)
=

1

1+ exp(−z)

Fig. 1  Flowchart of steps involved in the modelling
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relative measure of the forecast error, allowing for com-
parison across different datasets or forecasting methods.

Here xt is the observed values and ̂xt are the estimated 
or predicted values An error has been defined as the dif-
ference between the actual and fitted values. The expres-
sions for these KPIs are expressed below respectively;

(9)MAE =
1

N

N
∑

t=1

∣

∣xt − x̂t
∣

∣

(10)RMSE =

√

√
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N
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∑
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)2
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N

N
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∣

∣
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Results and discussion
Our analysis begins with a descriptive analysis of the 
performance indicators of players. In terms of winning 
probabilities, Roger Federer had a higher probability of 
winning compared to Novak Djokovic and Rafael Nadal. 
Novak had a lower standard deviation of winning prob-
abilities than Rafael and Roger, indicating more consist-
ent performance. Novak also had a lower coefficient of 
variation and interquartile range, further demonstrating 
his consistency.

Looking at aces, Roger had the highest number of ace 
points with 580, surpassing Novak and Rafael. Rafael had 
a lower standard deviation in the number of aces com-
pared to the other two. Novak’s minimum and maxi-
mum aces were 26 in 2004 and 518 in 2007, respectively. 
Rafael’s ranged from 57 in 2004 to 310 in 2010, while 
Roger’s ranged from 66 in 2020 to 695 in 2008. Examin-
ing double faults, Novak had a higher average number 

Fig. 2  NNAR structure with input, hidden, and output layers

Fig. 3  Pearson’s r heatmap of Novak, Roger, and Rafael’s key performance measures
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of double faults compared to the other players, although 
Rafael had a lower standard deviation in this aspect. 
Novak’s minimum and maximum double faults were 21 
in 2004 and 282 in 2010, respectively. Rafael’s ranged 
from 59 in 2012 to 166 in 2015, while Roger’s ranged from 
11 in 2021 to 156 in 2004. When considering game domi-
nance, Roger had a higher average game dominance with 
a mean of 2.685, compared to Novak and Rafael. Novak’s 
minimum and maximum game dominance was 0.79 in 
2004 and 3.27 in 2015, respectively. Rafael’s ranged from 
1.31 in 2004 to 3.76 in 2019, while Roger’s ranged from 
1.38 in 2021 to 3.61 in 2004.

Figure 3 presents a heatmap illustrating the correlation 
between performance measures and winning probabili-
ties for all three tennis players. Analyzing Novak’s statis-
tical data, we observed a significant correlation between 
the probability of winning and aces, sets won, and game 
dominance. The strongest correlation was found between 
winning probability and game dominance (r = 0.973***), 
while the weakest correlation was observed between win-
ning probability and double faults (r = 0.34).

Regarding Roger’s career, we observed a significant 
association between winning probability and several fac-
tors, including double faults, aces, sets won, and game 
dominance. The strongest positive correlation with 
winning probability was found with game dominance 
(r = 0.778***), while the weakest correlation was observed 
with aces (r = 0.599***). Analyzing Roger’s statistical 
information, we found significant correlations between 
winning probability and aces, sets won, and game domi-
nance. Notably, we observed a strong positive correla-
tion between winning probability and game dominance 
(r = 0.746***), while the weakest strong positive correla-
tion was noted with double faults (r = 0.179).

Table 1  Diagnostic measures of models predicting the 
performance of the tennis players

NOVAK DJOKOVIC

  Probability of 
winning

RMSE MAE MAPE

    ARIMA 0.02126 0.01616 2.7436

    ETS 0.02126 0.01614 2.7383

    NNAR 0.01601 0.01255 2.1618

    TBATS 0.02146 0.01675 2.9503

  Double defaults
    ARIMA 56.5542 43.7351 57.2306

    ETS 66.9577 49.8517 43.0383

    NNAR 53.0077 41.7159 35.3696

    TBATS 62.6287 45.3745 62.4586

  ACES
    ARIMA 128.4564 109.9007 89.2184

    ETS 144.0134 119.6025 106.7189

    NNAR 104.2740 85.51023 28.7619

    TBATS 144.3174 121.1243 102.2265

  Dominance
    ARIMA 0.4705 0.3837 17.2226

    ETS 0.3647 0.2891 13.8187

    NNAR 0.3597 0.2989 13.9716

    TBATS 0.4276 0.3493 20.3316

RAFAEL NADAL
  Probability of winning
    ARIMA 0.0660 0.04760 6.0412

    ETS 0.0660 0.04760 6.0416

    NNAR 0.0461 0.04139 4.9641

    TBATS 0.0660 0.04768 6.0075

Double defaults
    ARIMA 24.6661 19.6842 20.9383

    ETS 24.6674 19.6845 20.9398

    NNAR 20.5791 14.8302 15.8998

    TBATS 24.5742 19.4389 20.8931

ACES
    ARIMA 69.9294 59.6066 41.1588

    ETS 69.9329 59.6110 41.1625

    NNAR 60.1918 49.4050 27.5613

    TBATS 69.5792 59.0015 40.9155

Dominance
    ARIMA 0.5712 0.4684 20.9455

    ETS 0.5712 0.4684 20.9464

    NNAR 0.5080 0.3964 16.1695

    TBATS 0.5736 0.4608 20.0164

ROGER FEDERER
  Probability of winning
    ARIMA 0.0686 0.0509 6.1968

    ETS 0.0686 0.0510 6.1972

    NNAR 0.0544 0.0398 4.9312

    TBATS 0.0699 0.0537 6.5880

Table 1  (continued)

Double defaults
    ARIMA 40.1647 29.6454 98.8794

    ETS 40.1667 29.6439 98.8862

    NNAR 35.9006 26.1837 75.8978

    TBATS 36.5587 29.1475 94.0206

ACES
    ARIMA 202.3148 145.5033 60.13508

    ETS 168.8342 116.2379 66.44011

    NNAR 145.9614 110.6277 57.69298

    TBATS 148.8688 118.6755 59.20205

  Dominance
    ARIMA 0.5654 0.4243 18.4607

    ETS 0.5655 0.4243 18.4622

    NNAR 0.4849 0.3552 16.3458

    TBATS 0.5672 0.4247 18.9381
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Comparison of Linear Time series and NNAR model
We process the analysis by checking the presence of sta-
tionarity in the series. To achieve this end, we apply the 
Augmented-Dicky fuller test on the data series. This test 
is useful in tracing the non-stationarity component from 
the data. If the p-value which results is less than the level 
of significance alpha = 0.05, the null hypothesis is rejected 
and concludes that the series is not stationary. The non-
stationary series can be made stationary by applying a dif-
ferencing or any other transformation method that aligns 
with the data characteristics. Initially, the series exhibited 
non-stationarity at level 0, so we applied the first differ-
encing to achieve stationarity. Subsequently, all the series 
became stationary after the first differencing. Once the 
series became stationary, we proceeded to search for the 
most suitable candidate models. To accomplish this, we 
constructed a correlogram of the differenced series. From 
the analysis of the correlogram, it is found that the suitable 
ARIMA model for the series is ARIMA(2,1,3) as the lags of 
ACF and PACF are out of the boundaries on 2 and 3 lag.

For the application of the NNAR model, we proceeded 
as follows;

	(I)	 first, the Box–Cox transformation was applied 
before estimating the model.

	(II)	 secondly, the optimum number of non-seasonal 
lags p was identified for AR ( P ) process then 
the P lag was set to 1 and the optimal number of 
neurons identified was estimated by the formula; 
k =

p+P+1
2  . Here p = 8 and P = 1, where p shows 

the embedding dimension for non-seasonal time 
series. 8 non-seasonal lags have been used as input 
nodes [26]. In our model, there are 4 hidden lay-
ers. Practically speaking, hidden nodes are half of 
the input nodes. The function nnetar() has been 
utilized to apply a non-linear autoregressive tech-
nique for forecasting purposes on the performance 
indicators of each player. This function belongs to 
the forecast package for R and is capable of fitting a 
neural network model to a time series using lagged 
values of the time series as inputs.

Fig. 4  Short-term forecasting by NNAR (8,4) of performances measures of NOVAK
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The NNAR model showed the lowest values of RMSE, 
MAE, and MAPE among all models in predicting the 
performance of tennis players as noted in Table  2. 
For the performance indicators of NOVAK DJOKO-
VIC, the NNAR model for the probability of winning 
model value of RMSE = 0.01601, MAE = 0.01255, and 
MAPE = 2.1618 which is the least among all the models. 
Predicting the performance measure double defaults, 
for the NNAR model, RMSE = 53.0077, MAE = 41.7159, 
and MAPE = 35.3696 showing the least values among 
all the models applied. NNAR model for predicting the 
performance indicator, ACES, the RMSE = 104.2740, 
MAE = 85.51023, and MAPE = 28.7619. Similarly 
NNAR model for modeling the dominance perfor-
mance indicator, the RMSE = 0.3597, MAE = 0.2989, 
and MAPE = 13.9719 which are the least among all the 
models.

As noted in Table  1, considering the modeling of 
the performance of Rafael Nadal, the NNAR model 

outperformed all other models in modeling his perfor-
mance indicators. For modeling the probability of win-
ning, the RMSE of NNAR is 0.0461, MAE = 0.04139, 
and MAPE = 4.9641 which is the least among all selected 
models Modeling the double defaults of the players, 
NNAR also showed the lowest values of RMSE = 20.5791, 
MAE = 14.8302, and MAPE = 15.8998. For ACES, the 
RMSE of NNAR is 60.195, 49.050, and MAPE = 27.5613. 
In modeling the dominance of the player from 2004 to 
2022, NNAR also showed the lowest values of RMSE i.e. 
0.5080, MAE = 0.3964, and MAPE = 16.1695. In the case 
of Roger Federer, the RMSE of the NNAR model for mod-
eling the probability of winning is 0.0544, MAE = 0.0398, 
and MAPE = 4.9312. for double defaults, RMSE for the 
NNAR model is 35.9006, MAE is 26.1837 and MAPE is 
75.8978 lowest among all the selected models. The sec-
ond best model among the models is TBATS having 
RMSE, MAE, and MAPE lower than other models except 
for NNAR. For ACES from the year 2004 to 2022, the 

Fig. 5  Short-term forecasting by NNAR (8,4) of performances measures of Rafael
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NNAR model showed the RMSE = 145.9614, MAE = 110, 
6277, and MAPE = 57.69298 showed the least KPI val-
ues among all selected models. The second best model 
for modeling the ACES is TBATS and the model which 
showed the highest values of KPIs is ARIMA. NNAR 
model for dominance proposed the least values of RMSE, 
MAE, and MAPE with the respective values 0.4849, 
0.3552, and 15.3458. It can be compared from the results 
of all performance measures that NNAR performed well 
as compared to ARIMA, ETS, and TBATS models for all 
three tennis players.

Figures  4, 5 and 6 shows the forecasting of different 
performance measures used in tennis for all three players 
using NNAR (8,4). NNAR outperformed all other mod-
els in modeling and forecasting purposes as it showed the 
lowest values of KPIs among all other models.

Considering the 5 years ahead forecasting from Table 2 
it can be noticed that the probability of winning for 
Novak, Rafael, and Roger if they continue to play, will 

be 0.610, 0.7937, and 0.919 respectively. It can also be 
concluded from the study that aces of Novak, Rafael, 
and Roger will see ups and downs from 2023 to 2027 
and will be 419.658, 218.735, and 24.317 respectively till 
2027. Considering the game defaults, Novak will make 
around 78.933, Rafael will make 143.308 and Roger will 
be making 138.17 game defaults around 2027 and they 
also observed gradual ups and downs. The game domi-
nance for Novak will see a constant pattern till 2027 and 
will remain around 2.628 if he continues to play till 2027 
Rafael will observe a downward trend in game domi-
nance to around 2.237 and Roger will be expecting to see 
an increase in the game dominance around 3.432 if he 
continues to play his game till 2027.

Conclusion
Previous studies [9, 16, 22–25] on forecasting match 
results in tennis have commonly relied on official rank-
ings to infer the probability of a player winning a match. 

Fig. 6  Short-term forecasting by NNAR (8,4) of performances measures of Roger
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However, the reliability of these rankings-based models 
has been questioned. In our study, we took a different 
approach by utilizing various time series models that 
leverage the historical performance indicators of indi-
vidual players, which in turn contribute to their official 
rankings in ATP. To assess the performance indicators 
of players, we considered key factors such as the prob-
ability of winning, aces, game defaults, and game domi-
nance. These indicators are recognized as important 
measures in determining player rankings. Consequently, 
we evaluated different stochastic linear and non-lin-
ear time series models to effectively model and predict 
these performance indicators. Based on our analysis, the 
neural network auto-regressive model NNAR (8,4) out-
performed all other selected models in terms of model 
selection criteria, namely RMSE, MAE, and MAPE. As 
a result, this model was employed for the purpose of 
forecasting. Short-term forecasting was performed up to 
5 years ahead, assuming players would continue to par-
ticipate in the game. This study emphasizes that relying 
solely on the probability of a player winning a match may 
not accurately reflect their performance or ranking in 
ATP. Considering the performance measures which are 
time-dependent plays a significant role and should not 
be overlooked. Neglecting this factor can lead to mis-
leading conclusions. Moreover, this study holds great 
potential for benefiting players by providing insights to 
enhance their performance indicators in the future. By 
analyzing the results and gaining valuable knowledge, 

players can make targeted improvements to their perfor-
mance. It’s important to note that this study serves as a 
case study, focusing on the performance of three play-
ers and comparing different time series models. Given 
the outcomes and insights derived from this research, 
we recommend the NNAR model as a suitable choice for 
predicting various indicators in the tennis game in the 
near future.
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