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Abstract

Background It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic
effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed
to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX
injection in an animal model.

Methods Female C57bl/6 mice (n=28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection.
Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n=7), 2
(n=7),and 3 days (n=38) following the DOX injection. A sedentary (SED) group of mice (n=6) did not exercise. Animals
underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection.
Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis.

Results Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening
(LVFS) (MA=-1.7+3.3; p=0.406) and the SED group had the largest reduction (MA=-6.8+7.5; p=0.009). After
reclassification of animals according to their exercise compliance (performing >8/16 of high-intensity bouts), LVFS in
compliant mice was unchanged over time (LVFS MA=-1.3+5.6; p=0.396) while non-compliant animals had a LVFS
reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups.

Conclusions In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced
cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could
influence the negative impact of DOX on cardiac function.
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Background

Anthracyclines including doxorubicin (DOX) and epi-
rubicin are commonly used to treat various malignant
tumors such as breast cancer, leukemia, lymphomas and
sarcomas [1-3]. One of the main side effects of anthra-
cyclines is myocardial toxicity, which can lead to clinical
heart failure [4, 5]. The pathogenesis of DOX-induced
cardiotoxicity is still being investigated; among the main
proposed mechanisms is an increase of reactive oxygen
species (ROS) leading to lipid peroxidation and mem-
brane damage accompanied by an activation of caspase
and DNA degradation triggering cardiomyocyte apop-
totic pathways [6].

Exercise training during cancer treatment can effec-
tively improve cardiopulmonary fitness, quality of life
and relieve treatment related symptoms [7-9]. Further-
more, studies have shown that exercise training during
anthracycline treatment is feasible and attenuates cardiac
dysfunction in breast cancer patients [10, 11]. Both acute
exercise and chronic training have demonstrated car-
dioprotective effects in animal models [12, 13]. Previous
studies showed that an acute bout of moderate-intensity
exercise performed 24 h prior to treatment in murine
models attenuated DOX related cardiac dysfunction, car-
diomyocyte mitochondrial function and reduced cardiac
oxidative burden by reducing ROS [13, 14]. Most stud-
ies have focused on the cardioprotective effects of mod-
erate intensity exercise or voluntary free wheel exercise
prior and during anthracycline [12], but very few have
investigated the effect of high-intensity exercise, espe-
cially in acute models. High-intensity interval training
(HIIT) consists of short, repeated bouts of near maxi-
mal physical effort (85-95% of maximal aerobic capac-
ity) alternating with low intensity effort [15, 16]. This type
of training has greater efficiency than continuous exer-
cise for improving cardiorespiratory capacity (VO,) and
function in patients with heart failure and coronary dis-
eases [17-20]. However, efficacy of this type of exercise
performed concomitantly with anthracycline treatment
remains unclear. Also, HIIT could potentiate cardiotoxic-
ity, especially if performed shortly after DOX treatment,
since exercise acutely increases ROS production [21], and
the magnitude of this phenomenon is modulated by exer-
cise duration and intensity.

Therefore, the purpose of this study was to investigate
the effect of HIIE on cardiac function and structure per-
formed either 1, 2 or 3 days after DOX injection in an
acute cardiotoxicity mouse model. The main outcome
measure was left ventricular fractional shortening (LVES)
measured by echocardiography as a marker of cardiac
function. Secondary outcome measures were morpho-
logical and histopathological signs of cardiac remodeling.
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Methods

Animals

This study is reported in accordance with the Animals
in Research: Reporting In Vivo Experiments (ARRIVE)
guidelines [22]. All procedures were approved by the
institutional committee for the protection of animals
(CIPA, protocol number: CM18001FTs) of the University
of Montreal Hospital Research Center (CRCHUM, Mon-
treal, Canada). Animals received humane care in com-
pliance with the Canadian Council on Animal Care and
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH
Publication No. 85-23, revised 1985). Female C57bl/6
mice (#=30) from Charles River Laboratories (Saint-
Constant, Quebec, Canada), 64—70 days old, mean body
mass of 17.9 g+1.1 g (SD) upon arrival, were acclimated
to 12:12-hour artificial light-dark cycles at the research
facility, 48 h before the start of the protocol. Animals
were housed 3 to 5 mice per cage in an enriched environ-
ment, fed on a regular chow diet and had access to water
ad libitum. Female mice were chosen since previous stud-
ies have shown that adult male rodents are more sensitive
to the cardiotoxic effect of doxorubicin than females [23]
and have a lower survival rate after a bolus injection of
high dose DOX [24]. Our group showed that female mice
are less lethargic and therefore probably more willing to
exercise after DOX (supplementary file 1). Mice were
randomly assigned to one of the following groups: seden-
tary (SED; n=7), exercise groups consisting of one HIIE
session performed either 1 day (G1; n=7), 2 days (G2;
n=38), or 3 days (G3; n=8) post-DOX. Treatment alloca-
tion was determined using a computerized random list
tool (https://www.randomizer.org/).

Treatment

All animals received a single 20 mg/kg intravenous tail
vein bolus injection of DOX (hydrochloride>98%, Cay-
man Chemical, CO) dissolved in saline. This bolus dose
was chosen considering that it is known to cause a sig-
nificant reduction in left ventricular fractional shorten-
ing (LVES) within 5 days following injection [25] that
occurs much earlier than repeated injections of equiva-
lent cumulative doses but results in similar overall car-
diac dysfunction [26]. Following DOX-injection, water
drenched chow was placed in the bottom of the cages
and renewed daily to encourage animals to eat and stay
hydrated to prevent asthenia.

Exercise session

Treadmill (AccuPacer, Omnitech Electronics, Columbus,
Ohio, USA) acclimation protocol and maximal exercise
testing were adapted from the study of Petrosino et al.
[27]. The electrical stimulus was substituted by gentle
encouragement from a human operator using a tongue
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depressor to slightly lift the mice’s hind legs as previ-
ously described [28]. Acclimation was performed three
times with 48-60 h of recovery between training sessions.
Animals were placed on the static treadmill for 3 min
prior to exercise. Initial running speed was set at 6 m/
min for 5 min, followed by 9 m/min for 2 min and 12 m/
min for the last 2 min. For the entire exercise session, the
slope was set to 0 degree [29]. Following acclimation, all
mice underwent exercise testing to determine peak run-
ning speed (Vpeak), characterized as the greatest speed
reached prior to exhaustion, that is when the mice could
no longer continue despite repeated encouragement.
Each animal’s HIIE running speed was calculated from its
individual Vpeak.

The HIIE session started with a 3-minute warm-up
(<50% of Vpeak) followed by 8 sets of 1 min at high-
intensity (85-90% of Vpeak). Each set was interrupted by
1 min of active recovery period at low intensity (<50% of
Vpeak). A second series of 8 high-intensity exercise bouts
was performed following 5 min of passive recovery, thus
reaching a total of 16 high-intensity bouts. The exercise
session lasted 40 min or until exhaustion and was per-
formed at a fixed slope of 15 degrees. One HIIE session
was performed in the early afternoon either on day 1
(24 h), day 2 (48 h), or day 3 (72 h) following the DOX
injection according to each assigned exercise group.
Mice who were randomized to the sedentary group did
not perform any exercise but were placed in the treadmill
cages for 40 min ensuring that all groups were exposed to
comparable environmental stress.

Experimental procedures
All animals were sacrificed on day 9 post-DOX or earlier
if they reached>2 of any of the following intervention
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endpoints: body mass loss>20%, asthenia, dehydration,
respiratory distress, or severe heart failure observed by
echocardiography. Figure 1 depicts the experimental pro-
cedure timeline.

Echocardiography

Transthoracic echocardiography (Vivid E9, GE health-
care; with pediatric transducer i13L, GE, USA) was con-
ducted in lightly anesthetized mice at baseline and 7 days
after DOX injection. The anterior thoracic region was
shaved on a separate occasion prior to the beginning of
the echocardiography to reduce the stress and duration
of sedation. Images were obtained in M-Mode from the
parasternal short axis view, 5-10 min after a 5-minute
isoflurane induction period (2% isoflurane and 0.5 L/
min O,). To control for the hemodynamic depressive
effect elicited by isoflurane, minimal doses (0.5-1% iso-
flurane and 0.5 L/min O,) were used when images were
taken, and heart rate was closely monitored to obtain
comparable pre- and post-DOX echocardiographic
measures that are within normal physiological range
for mice [30]. Images were taken and analyzed offline
(Echopac7-003781 10.52.1.214, GE healthcare, USA)
by an echocardiogram expert (FT) blinded to assigned
group. Standardized measurement techniques were used,
and mean heart rate (HR) was averaged from three con-
secutive cycles. Measurements of cardiac dimensions
included: LV septal wall thickness and posterior wall
thickness, LV end-diastolic diameter and LV end-sys-
tolic diameter. Diameters were used to calculate LVES.
LV mass was estimated using Penn’s algorithm [31] as
described in supplementary file 3.
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Fig. 1 General schematic of the study design and timeline After baseline echocardiography and treadmill acclimation, animals were randomly allocated
to one of the four experimental groups: G1, HIIE 1 day following DOX injection; G2, HIIE 2 days following DOX injection; G3, HIIE 3 days following DOX
injection; SED, sedentary (no access to exercise). T0, bolus DOX injection; endpoint echocardiography was performed on day 7 following DOX injection
and all animals were sacrificed on day 9. DOX, doxorubicin; HIIE, high-intensity interval exercise
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Necropsy

Animals were weighed, anesthetized with 3% isoflurane;
0.5 L/min O, and euthanized by exsanguination from the
inferior vena cava followed by a pleural puncture. Hearts
were excised, stripped of fat, rinsed in ice-cold PBS,
lightly blotted to remove excess blood; then weighted
and longitudinally bisected from the apex along the left
atrium. Half of the heart was embedded in OCT (Opti-
mal Cutting Temperature compound) and immediately
frozen in isopentane at -80 °C for future analysis; the
other half was fixed for histological examination in 10%
neutral buffered formalin for 24—48 h and embedded in
paraffin. The left leg was severed above the knee joint and
mechanically stripped to the bone. Tibia length was mea-
sured from the condyles to the tip of the medial malleo-
lus using a micrometer caliper (Vernier caliper, Mitutoyo,
Co., Japan). Tibia length was used to normalise heart
mass for comparison, as previously described [32].

Histopathologic examination

The paraffin heart tissues were sectioned at a thick-
ness of 5 pym and stained with hematoxylin and eosin
in accordance with standard procedures. Two trained
pathologists blinded to the group assignment examined
the tissue sections under light microscopy to quantify
necrosis, cytoplasmic clearing, vacuolisation, inflamma-
tion, fibrosis and cardiomyocyte hypertrophy. Histologi-
cal scores of cardiomyocyte hypertrophy ranged from 0
to 3, with 0 representing an absence of cell hypertrophy;
1<25%; 2 between 25 and 50%; and 3>50% of cells with
hypertrophic changes.

Data processing and statistical analysis

Data were analyzed using IBM’s SPSS Statistics® (version
26.0; SPSS Inc., Chicago IL, USA) and GraphPad Prism®
(version 8.4.2; San Diego, CA, USA) was used to produce
graphs. Outcome measures were tested for normality
through visual inspection of normality plots and analy-
sis of skewness and kurtosis. Data are reported as group
means (M) and standard deviations (SD), or medians
(Md) and interquartile intervals (IQR) for non-normally
distributed data. Statistical analysis of LVFS pre- and
post-DOX was conducted using a repeated measures
ANOVA and Bonferroni corrected post hoc test when
appropriate. Pairwise comparisons of LVFS pre- and
post-DOX injection were computed as mean deltas (MA)
and bias-corrected accelerated bootstrap 95% confidence
intervals (CI). Cohen’s d effect sizes were also calculated.
Group comparisons were conducted using the Kruskal-
Wallis test for non-parametric continuous variables with
the Dunn-Bonferroni corrected post hoc test if appro-
priate and Fisher’s exact test for categorical variables.
Significance was determined at a P-value of <0.05 for all
statistical analyses.
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Considering that some of the mice would have been
unable or unwilling to complete the training session,
additional analyses were performed by merging the exer-
cise groups and allocating the mice according to their
exercise session compliance to further explore the safety
of this intervention. For analytical purposes, mice were
allocated to the compliant (C) group if they performed
more than 50% (>8/16 bouts), and in the non-compliant
(N-C) group if they performed less than or equal to 50%
of total HIIE session.

Results

HIIE-DOX animal model

Two mice were excluded from the final analysis: one
mouse from the SED group died unexpectedly, immedi-
ately prior to the DOX injection, and one mouse from the
G2 group developed pyelonephritis (diagnosed on nec-
ropsy) and was euthanized. Therefore, =28 mice were
included in the final analyses (SED n=6; G1 n=7; G2
n=7, and G3 n=8). None of the mice refused to run at
baseline during the acclimation period and the peak exer-
cise testing. Mean Vpeak was 37.214.9 m/min, average
running speed for high-intensity bouts was 33.5+4.4 m/
min and 18.6+£2.5 m/min for active recovery between
bouts. The overall post-DOX compliance rate for the
HIIE groups, defined as >8 high-intensity bouts com-
pleted of the 16 bouts prescribed, was 54%. Figure S2.1
shows individual and median number of bouts completed
according to group (supplementary file 2). No significant
difference in exercise compliance was found between
G1 (n=3; 43% compliant), G2 (n=4; 57% compliant, or
G3 (n=5; 62,5% compliant) exercise groups (p=0.867;
Fisher’s exact test). Two mice from the G2 exercise group
were euthanized at the end of day 8 because they had
reached>2 of the study’s intervention points for ethi-
cal reason (body mass loss>20%, severe asthenia, and
dehydration).

HIIE effect according to the timing of exercise following
DOX

Effect on body mass. Body mass according to the experi-
mental group is presented in Fig. 2A and body mass del-
tas between baseline and endpoint were SED=-3.8+0.8 g;
Gl= -4.3%1.3 g G2= -4.0%£1.6 g and G3= -4.1%£1.5 g.
There was a significant (p<0.001) effect of body mass
change over three time points (day 0, day 4, and day 9
post DOX) without a significant time*group interaction
(»p=0.906).

Echocardiography results

Echocardiography parameters are presented in Table 1
and supplementary file 3 (LVmass). DOX treatment
resulted in an overall posterior (p=0.023) and septal
(p=0.004) wall atrophy, and a end-systolic dilatation
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Fig. 2 Body mass following doxorubicin injection (A) according to intervention groups, there is a significant time effect (p <0.001); (B) according to ex-
ercise compliance, there is a significant (p=0.018) time*compliance interaction and a significant time effect (p <0.001). ***P <0.001, represents repeated
measures ANOVA Bonferroni corrected post hoc for time effect. Values are mean+SD. C, compliant (n=12); G1, HIIE day 1 post-DOX (n=7); G2, HIIE day 2
post-DOX (n=7); G3, HIIE day 3 post-DOX (n=8); N-C, non-compliant (n=10) and SED, no exercise (n=6)

Table 1 Echocardiographic data at baseline and 7 days after doxorubicin treatment

Analyses according to intervention group

Analyses according to exercise compliance

Group Baseline Day 7 Group Baseline (mean+SD) Day 7
(mean*SD) (mean+SD) (mean+SD)

HR, beats/min SED (n=6) 606 +86 595+43 SED (n=6) 606 +86 595+43
G1(h=7) 643+33 581+34" N-C (hn=10)C (n=12) 614+41 570+29"F
G2 (n=7) 597+34 607 49 602+69 617+47"
G3 (n=8) 586+78 598+ 54

SWT, mm SED (n=6) 0.767 +0.082 0.717+0.041 SED (n=6) 0.767 +0.082 0.717 £0.041
Gl (n=7) 0.743+0.053 0.757+0.079 N-C (n=10)C (n=12) 0.760+0.052 0.710+0.088
G2(n=7) 0.800+0.058 0.700+0.058" 0.767 +0.065 0.717+0.039
G3(n=8) 0.750+0.053 0.687+0.035"

PWT, mm SED (n=6) 0.750+0.084 0.717+0.075 SED (n=6) 0.750+0.084 0.717+0.075
Gl (n=7) 0.743+0.053 0.729+0.095 N-C (n=10)C(n=12) 0.770+0.067 0.700+0.082
G2 (n=7) 0.743+0.053 0.657+0.079 0.733+0.078 0.683+0.083
G3(n=8) 0.763+0.106 0.687 +0.064

LVDd, mm SED (n=6) 3.233+0413 3.183+0.172 SED (n=6) 3.233+0413 3.183+0.172
Gl (n=7) 3.257+0.282 3.186+0.261 N-C (n=10)C (n=12) 3.210+0.288 3.180+0.225
G2 (n=7) 3.271+0.386 3.143+0.190 3.267+0.293 3.150+0.224
G3(n=8) 320040214 3.163+0.233

LVDs, mm SED (n=6) 155040217 1.717+0.293 SED (n=6) 155040217 171740293
Gl (n=7) 1.500+0.258 1.643+0.282 N-C (n=10)C(n=12) 1480+0.230 171040218
G2 (n=7) 1.557+0.299 1.643+0.172 1.583+0.233 1575+0.136
G3(n=8) 1.550+0.160 1.625+0.103

LVFS, % SED (n=6) 52+3 46+7" SED (n=6) 52+3 46+7"
G1(n=7) 53+6 49+5 N-C (h=10)C(n=12) 54+5 47457
G2 (n=7) 53+5 48+4" 51+4 50+
G3(n=8) 51+3 50+4

(p=0.047) compared to baseline values. Figure 3A shows
LVES changes pre- and post-DOX according to groups.
Group analysis of pre- and post-DOX LVES changes
showed a significant LVFS reduction for SED (p=0.009),
G1 (p=0.043), and G2 (p=0.043), but none for the G3
group (p=0.406). The SED group had the greatest reduc-
tion in LVFS (MA= -6.8+7.5; 95% CI [-12.00; -1.33]) that
represented a very large pre- and post-DOX effect size
(d=2.37). Among the exercise intervention groups, the
G3 group had the smallest reduction in LVFS (MA=-
1.7£3.3; 95% CI [-4.00; 1.10]) with a medium effect
size (d=0.61) while G1 and G2 groups experienced
larger reductions (MA=-4.7%+5.3; 95% CI [-7.57; -1.61]
and MA=-5.1%+7.0; 95% CI [-10.70; 2.56], respectively),

with larger effect sizes (d=0.81 and d=1.12, respec-
tively). Overall, there was a significant reduction in LVFS
(p<0.001) post DOX but no significant time*group inter-
action (p=0.438) despite the observed differences in
effect size described above.

C, compliant; G1, HIIE day 1 post-DOX; G2, HIIE day 2
post-DOX and G3, HIIE day 3 post-DOX; HR, heart rate
(mice HR at the time of echocardiographic imaging and
measurement of cardiac dimensions); LVDd, left ventricle
end-diastolic diameter; LVDs, left ventricle end-systolic
diameter; LVES, left ventricular fractional shortening;
N-C, non-compliant; PWT, posterior wall thickness;
SED, no exercise; SWT, septal wall thickness.*P<0.05,
**P<0.01, represents Bonferroni corrected post hoc for
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Fig. 3 Change pre- and post-doxorubicin in left ventricular fractional shortening (A) according to intervention groups, there is a significant time effect
(p<0.001); (B) according to exercise compliance, there is a significant (p=0.045) time*compliance interaction and a significant time effect (p <0.001).
*P<0.05, **P<0.01, represents Bonferroni corrected post hoc for time effect per group. Each circle represents a mouse. Representative M-mode images
are displayed. C, compliant (n=12); G1, HIIE day 1 post-DOX (n=7); G2, HIIE day 2 post-DOX (n=7); G3, HIIE day 3 post-DOX (n=28); LVFS, left ventricular
fractional shortening; N-C, non-compliant (n=10) and SED, no exercise (n=6)

time effect within each group; "P<0.05, represents differ-
ences between groups at either baseline or day 7.

Morphological and histological results

Heart to tibia ratio did not differ significantly across
groups (p=0.885) as shown in Fig. 4A. No signs of necro-
sis, vacuolisation, inflammation, cytoplasmic clearing,
or fibrosis were found in the histopathological analysis
by two independent pathologists. Hypertrophy scores
according to intervention groups and representative
images are presented in Fig. 5 with no significant differ-
ence between groups (p=0.366).

HIIE effect according to exercise compliance

We observed that 10 of the 22 animals within the inter-
vention groups (45%) were unable to complete the train-
ing (performing less than or equal to 50% of prescribed
high-intensity bouts). We decided to analyse them sepa-
rately and compared them to compliant (#=12) and sed-
entary (1=6) animals.

Effect on body mass

There was a significant (p<0.001) body mass change over
three time points (day 0, day 4 and day 9 post DOX),
no difference between groups and a significant body
mass change*compliance effect (p=0.018) as depicted in
Fig. 2B.

Echocardiography results

Echocardiography parameters are presented in Table 1
and pre- and post-DOX change in LVES according to
exercise compliance are depicted in Fig. 3B. SED and
non-compliant (N-C) groups had a similar reduction in
LVES, MA= -6.817.5; 96% CI [-12.00; -1.33] and MA=
-6.713.2; 95% CI [-9.00; -4.05] respectively, representing
both a very large effect size (d=2.37 and d=1.39, respec-
tively). For the compliant group (C), the decrease in
LVES was MA= -1.315.6; 95% CI [-4.76; 1.92], represent-
ing a small effect size (d=0.34). There was a significant
(p<0.001) time effect of LVFS change between pre- and
post-DOX and a significant (p=0.045) time*compliance
interaction for LVFS. SED and N-C had a significant
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Fig. 4 Heart mass to tibia length ratio (A) according to intervention groups there is no significant difference between groups. (B) Heart mass to tibia
length ratio (mg/mm) according to exercise compliance groups; There is a significant difference (p=0.029), *P<0.05, represents Dunn-Bonferroni post
hoc test. Values are median and interquartile. C, compliant; G1, HIIE day 1 post-DOX; G2, HIIE day 2 post-DOX; G3, HIIE day 3 post-DOX; N-C, non-compliant

and SED, no exercise

A)
Cell hypertrophy Absenc of cell hypertrop
B) Score | SED,n (%) | G1,n (%) | G2,n(%) | G3,n (%)
0 16 (16.7) | 2/7(28.6) | 2/7(28.6) | 3/8(37.5)
1 3/6 (50.0) | 3/7(42.9) |0/7(0) 3/8 (37.5)
2 2/6 (33.3) | 0/7(0) 3/7 (42.9) 1/8 (12.5)
3 0/6 (0) 2/7(28.6) | 2/7 (28.6) 1/8 (12.5)

Fig. 5 Cardiac cell hypertrophy (A) representative images magnified 200x; arrows represent hypertrophied cells. (B) Table representing quantification
of hypertrophy scores at 9 days after doxorubicin treatment. Hypertrophy score 0, absence of cell hypertrophy; 1<25%; 2, 25-50%; and 3 >50% of cell
hypertrophy. G1, HIIE day 1 post-DOX; G2, HIIE day 2 post-DOX; G3, HIIE day 3 post-DOX; and SED, no exercise. No significant difference between groups

reduction in LVFES after DOX (p=0.004 and p=0.001
respectively), whereas no significant pre- and post-DOX
difference was found for the C group (p=0.396). Signifi-
cant correlation was found between the number of high-
intensity intervals completed and LVFS change (p=0.031;
R?=0.167; see Figure S2.2 in supplementary file 2).

Morphological and histological results

There was a significant difference between groups anal-
ysed according to compliance (C, N-C and SED) regard-
ing heart to tibia ratio (»p=0.029). Post-hoc analysis
showed that compliant animals had significantly larger
normalized heart mass compared to non-compliant

animals (p=0.032, Fig. 4B). No statistically significant
correlation was found between the number of high-inten-
sity intervals completed and heart to tibia ratio (p=0.079;
R?=0.114), see Figure S2.3 in supplementary file 2.
Hypertrophy scores based on compliance are presented
in Table S2.1 in the supplementary file 2 and no signifi-
cant difference (p=0.729) was found between groups.

Discussion

To our knowledge, this is the first study investigating
the effect of HIIE performed shortly after DOX treat-
ment, much less the effect of exercise timing relative to
treatment administration. Our results show that one
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HIIE session following DOX treatment was feasible for
C57bl/6 female mice and did not exacerbate cardio-
toxicity in comparison with sedentary mice. In fact, an
exercise session performed 3 days after DOX and, more
importantly, a high level of compliance to the HIIE ses-
sion were two factors which positively influenced the
impact of DOX on LVFS.

Feasibility of HIIE in a DOX treated animal model

More than half (54%) of our study animals were able to
complete the 40-minutes HIIE session despite the highly
cardiotoxic dose. All animals were encouraged to keep
running to the point where they were unable to continue
regardless of repeated stimulation. Pushing the animal
to continue further despite obvious signs of difficulty
or exhaustion could have resulted in deleterious effects.
For example, a study using a 6 h swimming bout in rats
showed acute deleterious effects such as increases in oxi-
dative damage to tissues caused by increases in ROS and
reduced redox antioxidant function [33].

The acclimatation protocol used in the study was short
in duration (12 min) and of low to moderate intensity to
limit the cardioprotective preconditioning effect related
to longer exercise sessions performed at moderate to
vigorous intensity. It is possible that an acclimatation
protocol including intervals of moderate intensity could
have better prepared the mice for HIIT and therefore
increased compliance to the intervention.

Compliance to exercise in our study was similar at day
1, day 2 and day 3 following DOX. Non-compliance to
exercise or reduced exercise capacity, as demonstrated in
other studies following DOX, may be related to the treat-
ment’s non-cardiac side effects such as asthenia, diarrhea
and anorexia [34] affecting the animal’s physical capacity
and willingness to exercise. Previous studies reported sig-
nificant reduction in voluntary wheel running, reduced
peak speed and a 40% decline in running performance
following cardiotoxic treatment compared to non-treated
animals [34-36]. This DOX induced reduction in exer-
cise capacity may explain why 45% of our study’s animals
were unable to perform all of the prescribed high-inten-
sity bouts. Accordingly, Elsea et al’s study [34], showed
that animals tend to drastically reduce their voluntary
wheel running activity on the day of the treatment fol-
lowed by a gradual increase of their activity level over a
period of 1-10 days. Therefore, we can hypothesize that
tolerance and compliance to HIIE in these animals could
be greater in the future if performed later than during the
first 3 days after treatment.

Effect of HIIE performed shortly following DOX treatment
on cardiac function

We observed that animals unable to perform the HIIE
session (non-compliant) had a similar and significant
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reduction in LVFS compared to sedentary animals,
whereas LVFS did not change in compliant animals. To
our knowledge no other study investigated the acute
effect of a single exercise session performed immediately
following DOX treatment though, some studies demon-
strated that one moderate or vigorous exercise session
performed 24 h hours prior to DOX treatment preserved
cardiac function in rats and humans compared to their
sedentary counterparts [13, 37]. Cardioprotective effects
of acute vigorous efforts such as HIIE could be related to
the systemic transient upregulation of total antioxidant
capacity and anti-inflammatory effect (increases in white
blood cells) that have been demonstrated in healthy
humans following this type of exercise [38]. Therefore,
one exercise session may have short term cardioprotec-
tive effect and performing HIIE following treatment
(when feasible) may help preserve cardiac function.

Furthermore, previous studies demonstrated that
chronic moderate intensity continuous exercise per-
formed between DOX treatment cycles in C57bl/6 mice
had cardioprotective effects by preserving LV end-sys-
tolic volume, LV internal dimension and strain rate, but
did not find a significant effect on LVFES [36, 39]. Higher
intensity exercise usually generates greater improvements
in VO, and stroke volume than lower intensity exer-
cise [17, 40]. Therefore, future studies should investigate
the effect of multiple exercise sessions of HIIE between
DOX treatment cycles in a chronic treatment administra-
tion regimen which may provide a greater cardioprotec-
tive effect related to training induced adaptations.

Effect of HIIE performed concomitantly with DOX
treatment on cardiac structure

Previous results from magnetic resonance imaging dem-
onstrated that cardiac atrophy occurs shortly following
anthracycline exposure in humans and is associated with
worse clinical outcomes [41, 42]. In our study, one HIIE
session did not influence normalized heart mass since no
differences were found between exercising and sedentary
animals regardless of exercise compliance. Since other
studies reported that low to moderate-intensity chronic
exercise partially preserved normalized heart mass and
cardiomyocyte density [36, 39], we can hypothesize
that only repeated HIIE sessions could influence DOX
induced cardiac atrophy.

In our short-term high DOX dose animal model, no
signs of necrosis, cytoplasmic clearing, vacuolisation,
fibrosis or inflammation were detected at 9 days follow-
ing bolus DOX injection. However, more than 25% of
LV cardiac cells were hypertrophied in 39.3% of the total
sample, which is consistent with Diaz et al’s study that
found important increases in hypertrophic markers such
as MYH7 and BNP, 7 days following a bolus DOX dose
of 10 mg/kg. After one HIIE session, we did not observe
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sub-acute effect on cardiac cell hypertrophy. The long-
term effect of HIIE combined with DOX on cardiac cell
hypertrophy is unknown. Future studies should inves-
tigate the effect of HIIE training on pathological DOX-
induced cardiac remodeling using a chronic exercise
and DOX administration model with long-term study
endpoints.

Timing of HIIE relative to anthracycline treatment

While most animal studies investigated the cardioprotec-
tive effect of aerobic exercise interventions performed
prior to treatment [12, 43], our study explored the effect
of HIIE performed shortly after DOX treatment. Though
exercise preconditioning has a greater cardiac func-
tion (LVES) protective efficacy compared to concomi-
tant exercise [12], performing exercise during treatment
could confer additional benefits related to the effect of
the treatment on the cancer itself. Two pre-clinical stud-
ies using xenograft murine tumor models demonstrated
that exercise does not seem to attenuate the antitumor
effect of DOX and may even enhance treatment effect
and reduce tumor burden [44, 45]. Exercise intervention
in these two previous studies was low intensity tread-
mill running or free wheel running. The effect of HIIT
on tumor and treatment efficiency is still unknown. The
next steps could be to investigate the effect of HIIT in a
cancer murine model receiving anthracycline. The ideal
moment to start exercising following DOX intervention
needs to be further explored. However, our study sug-
gests that some delay between the end of the infusion and
the HIIE session might help to maximize its benefit on
cardiac function.

Study limitations

Some animals were unable to complete the exercise
intervention which contributed to a loss of statistical
power. Although we performed a more robust analysis
(bootstrapped CI) and calculated effect sizes that are less
dependent on sample size, our pilot results must be taken
with cautious considering the size of our mice sample.
Moreover, we cannot extrapolate this study’s results to
male murine models or senescent animal models con-
sidering that sex hormones can offer a cardioprotective
effect and no interventions were applied to control hor-
monal status such as using an ovariectomized animal
model.

Also, it is to be noted that this study is a physiologi-
cal model investigating the effect of exercise on DOX-
induced cardiotoxicity without cancer and therefore
limits its translation to the cancer care clinical context.
Studies investigating acute exercise following DOX are
rare, especially at high exercise intensity. This study
was therefore designed as a first step in the investiga-
tion of the HIIE effect when performed shortly following
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treatment to inform future larger scale studies on the
subject using chronic exercise intervention in a murine
cancer model.

Conclusions

This pilot animal-based study revealed that one single
HIIE session performed shortly after DOX treatment is
feasible in an animal model and did not exacerbate car-
diotoxicity acutely. The time between the DOX infusion
and the HIIE session as well as the level of compliance
to exercise are two factors which could influence the
negative impact of DOX on cardiac function. The long-
term safety and potential benefits of multiple HIIE ses-
sions performed shortly after DOX are still unknown and
future studies are required to investigate the impact of
repetitive HIIE sessions in a tumor-bearing animal model
receiving multiple doses of DOX over a few weeks.

Abbreviations
DOX doxorubicin

Lv left ventricular

ROS reactive oxygen species

HIT high-intensity interval training (multiple exercise sessions over a
given period)

HIIE high-intensity interval exercise (one exercise session)

LVFS left ventricular fractional shortening

Vpeak  peak running speed
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