Marshall et al. BMIC Sports Science, Medicine, and Rehabilitation (2015) 7:13

DOI 10.1186/513102-015-0006-9
BMC

Sports Science, Medicine & Rehabilitation

RESEARCH ARTICLE Open Access

Biomechanical symmetry in elite rugby @
union players during dynamic tasks: an
investigation using discrete and continuous

data analysis techniques

Brendan Marshall'**", Andrew Franklyn-Miller'*, Kieran Moran®, Enda King', Chris Richter'**, Shane Gore'*”,
Siobhén Strike® and Eanna Falvey'*®

Abstract

Background: While measures of asymmetry may provide a means of identifying individuals predisposed to injury,
normative asymmetry values for challenging sport specific movements in elite athletes are currently lacking in the
literature. In addition, previous studies have typically investigated symmetry using discrete point analyses alone. This
study examined biomechanical symmetry in elite rugby union players using both discrete point and continuous
data analysis techniques.

Methods: Twenty elite injury free international rugby union players (mean + SD: age 20.4 + 1.0 years; height 1.86 +
0.08 m; mass 984 + 9.9 kg) underwent biomechanical assessment. A single leg drop landing, a single leg hurdle
hop, and a running cut were analysed. Peak joint angles and moments were examined in the discrete point
analysis while analysis of characterising phases (ACP) techniques were used to examine the continuous data.
Dominant side was compared to non-dominant side using dependent t-tests for normally distributed data or
Wilcoxon signed-rank test for non-normally distributed data. The significance level was set at a=0.05.

Results: The majority of variables were found to be symmetrical with a total of 57/60 variables displaying symmetry
in the discrete point analysis and 55/60 in the ACP. The five variables that were found to be asymmetrical were hip
abductor moment in the drop landing (p = 0.02), pelvis lift/drop in the drop landing (p = 0.04) and hurdle hop
(p=0.02), ankle internal rotation moment in the cut (p =0.04) and ankle dorsiflexion angle also in the cut (p =0.01).
The ACP identified two additional asymmetries not identified in the discrete point analysis.

Conclusions: Elite injury free rugby union players tended to exhibit bi-lateral symmetry across a range of
biomechanical variables in a drop landing, hurdle hop and cut. This study provides useful normative values for
inter-limb symmetry in these movement tests. When examining symmetry it is recommended to incorporate
continuous data analysis techniques rather than a discrete point analysis alone; a discrete point analysis was unable
to detect two of the five asymmetries identified.
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Background

The assessment of movement control and inter-limb
symmetry during functional tasks is increasingly popular
as a means of screening for predisposition to injury, in
the evaluation of athletic performance and in the assess-
ment of rehabilitation following injury [1-3]. A number
of research studies provide support for these practises,
and in turn, the premise that functional asymmetry (side
to side differences in kinetics or kinematics) [4] may
provide an insight into future injury risk [5-7].

Various studies have identified kinetic and kinematic
asymmetry as an underlying risk factor for injury.
Hewett and colleagues [7] found significantly greater
asymmetries in landing knee abduction moments (6.4
times greater) in individuals who went on to injure their
anterior cruciate ligament. In another prospective study,
Paterno and colleagues [8] found that individuals who
suffered a second anterior cruciate ligament injury had
4.1 times greater asymmetry in knee extensor moments
on landing.

Asymmetry as an injury risk factor is not confined to a
single joint, variable or injury type. Angle and moment
variables at the ankle [9, 10], knee [7, 11], hip [8, 12],
pelvis [13] and torso [14], as well as ground reaction
forces [15] and ground contact times [16] have all been
implicated in the development of lower extremity injury.
Such injuries include ankle ligament injury [10], tibial
stress fracture [11], knee ligament injury [8] and patello-
femoral pain syndrome [17]. It is suggested that a not-
able asymmetry in these biomechanical factors may
increase the risk of lower extremity injury in one limb
over the other [7, 6].

In order to use measures of asymmetry as a means of
identifying individuals predisposed to injury it is ex-
tremely important to establish normative values for un-
injured individuals on a number of biomechanical
measures. Normative values across multiple joints are
not only required due to the numerous factors associ-
ated with injury, but also because poor movement con-
trol and excessive force at a proximal/distal joint can
influence moments and forces at another joint [13, 18].
Zazulak and colleagues [14], for example, found that def-
icits in neuromuscular control at the trunk could pro-
spectively predict knee injury risk. This phenomenon
arises due to the inter-linked nature of the body’s seg-
ments and the presence of bi-articular muscles (interseg-
mental movement constraint).

While some normative values of asymmetry exist for
straight line running [6, 19], and bilateral landing [20], a
full range of three dimensional measures on more spe-
cific multi-directional tasks, such as uni-lateral landing,
hopping and cutting, are lacking in the literature. These
more dynamic tasks are commonly associated with injury
[5, 21-23]. In addition, there is a need for normative
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symmetry values for elite athletic populations as the major-
ity of previous work in this area has been carried out with
sub-elite athletes [6, 24, 25]. Elite athletes may develop
asymmetries due to the preferential use of a dominant limb
in training. Vittasalo and colleagues [26], for example,
highlighted that training history influences the timing and
magnitude of lower extremity muscle activation on landing
in a jump.

Previous studies investigating biomechanical symmetry
in dynamic movements have typically done so using
discrete points (e.g. peak values) [20, 24, 25]. There are a
number of limitations with this type of analysis however:
(a) asymmetry may occur over phases that are not cap-
tured in a single data point, (b) the timing of discrete
points can differ between limbs, and (c) the discrete
points utilised typically vary between studies [27]. Con-
tinuous data analysis techniques [28], such as Analysis
of Characterising Phases (ACP) [27], have been devel-
oped to overcome these issues but it appears that a com-
parison of symmetry findings from both continuous and
discrete analyses has yet to be undertaken for dynamic
sporting movements. Such an examination is warranted
as the use of a discrete point analysis alone may not de-
tect all significant asymmetries.

The primary aim of this study was to examine bio-
mechanical symmetry during multi directional neuro-
muscular challenge tests in a cohort of elite injury free
rugby union players. It was hypothesised that there
would be a general trend toward inter-limb symmetry
but that some biomechanical variables would display
asymmetry due to the preferential use of a dominant
limb in training. A secondary aim was to compare the
findings of both discrete point and ACP analyses tech-
niques. It was hypothesised that the results of these dis-
tinct analyses would differ due to the utilisation of
discrete point and continuous data, respectively. In an
attempt to adequately simulate movements that are as-
sociated with injury in field sport play [5], a single-leg
landing [29], a single-leg lateral hop [5], and a change-
of-direction cut [21] were examined.

Methods

Participants

Prior to the commencement of the rugby season, twenty
elite rugby union players (mean + SD: age 20.4 + 1.0 years;
height 1.86 + 0.08 m; mass 98.4+9.9 kg) were recruited
to undergo three dimensional (3D) biomechanical as-
sessment. All participants were professional academy
players (7 =11 had made senior club appearances), and
all had international caps at an age-group level. Both for-
ward (n=11) and back (n=9) players were selected and
all were injury free for three months at the time of test-
ing and had no history of chronic lower extremity injury
or surgery in the previous two years (self-report). The
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study was approved by the Sport Surgery Clinic Hospital
Ethics Committee and all subjects signed informed
consent.

Experimental protocol

Prior to testing, participants’ mass and height was re-
corded using an electronic scale (Seca 876) and stadi-
ometer (Seca 213) and their dominant leg was identified
(the leg one would use to kick a ball for distance). A
warm-up consisting of a three minute treadmill jog at
8 km/h followed by five body weight bilateral squats was
then undertaken. Testing involved three trials of: (1) a
single leg drop landing, (2) a single leg hurdle hop, and
(3) a running cut. The 3D Biomechanics Laboratory is
equipped with an artificial grass surface (polyethylene
mono filament, Condor Grass, Holland) which is per-
manently and firmly fixed to the force plates (Sanctuary
Synthetic Adhesive, Ireland). Participants wore their
own molded football boots.

The drop landing was initiated from a 30 cm step
where participants stood upright with their hands across
their chest and their non-weight bearing foot behind
with an approximate 90° knee bend. They then dropped
off the step, made a uni-lateral landing on the force plat-
form and held the landing position for 2 s [30]. An add-
itional movie file shows this in more detail [see
Additional file 1]. Participants were instructed to drop
directly from the 30 cm height rather than jump verti-
cally. The hurdle hop consisted of a lateral hop over a
15 cm hurdle and an immediate hop back to the initial
starting position. The distance between foot contacts
was approximately 40 cm; the distance between force
plate centres. Participants undertook the hop as quickly
as possible, and while the free leg was in the same orien-
tation as described for the drop landing, the arms were
free to move [see Additional file 2]. The landing from
the first hop over the hurdle was analysed. For the cut,
participants ran as fast as possible toward a marker
placed on the floor, made a single complete foot contact
on the force plate, and performed a 75° cut before run-
ning maximally to the finish (Fig. 1). An additional
movie file shows the cut in greater detail [see Additional
file 3]. Time to complete the cut was recorded using the
Hotspot timing system (Games Education - Hotspot,
UK).

Testing was carried out in the order of drop landing,
hurdle hop and cut and all trials of one movement were
completed on one leg (the choice of leg was randomised)
before moving to the other leg. Participants undertook
two practice trials of each movement (submaximal prac-
tice trials for the cut) before capture. Recovery of 30s
was allocated between repetitions of the drop landing
and hop with 1 min allocated between trials of the cut.
To facilitate an assessment of the test-retest reliability of
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measures, fifteen players were re-tested one week after
their initial testing session.

Data acquisition and analysis

An eight camera 3D motion analysis system (Vicon -
Bonita B10, UK), synchronized with two 40x60cm force
platforms (AMTI — BP400600, USA), was used to collect
movement data. The force platforms had force ranges in
the Fx, Fy and Fz directions of 2224 N, 2224 N and
4448 N, respectively and were zeroed at the start of
every new data capture session. Force plate calibration
was checked by placing a known weight on the plates
and examining the subsequent data. Reflective markers
(1.4 cm diameter) were placed at bony landmarks on the
lower limbs, pelvis and trunk according to Plug in Gait
marker locations [31]. Vicon Nexus software controlled
simultaneous collection of motion and force data at
200Hz and 1,000Hz, respectively and both were filtered
using a fourth order Butterworth filter with a cut-off fre-
quency of 15Hz to avoid impact artefacts [32, 33]. The
Vicon Plug in Gait modelling routine defined rigid body
segments (foot, shank, thigh, pelvis and torso) and used
standard inverse dynamics techniques [34] to calculate
segmental and joint kinematics and kinetics.

Ankle, knee, hip, pelvis and thorax angles were calcu-
lated as well as internal joint moments at the hip, knee
and ankle during foot contact with the force plate. Peak
ground reaction forces and ground contact time in the
cut were also examined. These variables were chosen as
they have previously been associated with the develop-
ment of numerous lower extremity injuries [7-16].

Angles were normalised to a standing static trial [35]
and thorax angles were calculated relative to the pelvis
as opposed to the global axis. It was not possible to
measure thorax angles in the drop landing due to upper
body marker occlusion. Transverse plane angles and mo-
ments for the single leg drop landing and hurdle hop
were calculated but for brevity are not reported. The
drop landing and hurdle hop involve movement primar-
ily in the sagital and frontal plane, and no significant
inter-limb differences in transverse plane variables were
observed in these tasks. Similarly, medial/lateral and lon-
gitudinal ground reaction forces in the hurdle hop and
drop landing were captured but are not reported; these
measures displayed no inter-limb asymmetries.

For the discrete point analysis, peak variable values
were calculated during nominal eccentric and concentric
phases (eccentric phase only in the drop landing). Initial
contact with the force platform marked the start of the
eccentric phase in all movements. The minimum vertical
height of the centre-of-mass marked the end of the ec-
centric phase in the drop landing while the maximal lat-
eral/anterior position of the centre-of-mass was used to
identify the end of the eccentric/start of the concentric
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Fig. 1 Layout for a right footed plant and cut left. From a standing start participants sprinted maximally toward a marker placed on the floor,
made a single complete foot contact on the force plate, and performed a 75° cut before sprinting maximally to the finish

phase in the hop and cut, respectively. The end of the
concentric phase in the hop and cut occurred at toe-off
from the force platform. Discrete-point data from the
eccentric phase, which is more typically associated with
injury development [6, 36], is presented herein while
data for the concentric phase of the hurdle hop and drop
landing is presented as additional data [see Additional
file 4: Table S1 and Additional file 5: Table S2, respect-
ively]. The mean of each participant’s three trials for
each limb was utilised in further analysis.

For the continuous waveform analysis, Analysis of
Characterising Phases (ACP) was utilised; ACP has pre-
viously been shown to be effective at identifying add-
itional features in biomechanical data to those identified
in a discrete point analysis [27]. ACP was performed as
described in Richter and colleagues [37] and landmark
registration was applied to reduce phase shift intra sub-
ject variability [37]. As with the discrete point analysis,
the mean of each participant’s three trials was utilised
for further analysis.

Statistical analysis

For both the discrete point analysis and ACP a Levene's
test and a Kolmogorov-Smirnov test was used to exam-
ine equality of variance and normality of distribution,
respectively. If data were parametric a paired Student's ¢-
test was used to examine differences between the dom-
inant and non-dominant sides [20], while a Wilcoxon
signed-rank test was otherwise performed. It was as-
sumed that an asymmetry existed when a significant be-
tween limb difference was found [20].

As a further measure of asymmetry an absolute asym-
metry index was also calculated as per Karaminidis and
colleagues [19] [Eq. 1] for the discrete point data. The
asymmetry index is a popular measure that is often cited

in the literature [38] but its ability to provide a standar-
dised score across variables of different magnitudes has
been questioned [24].

|Xp-Xnb|

—————— %100
05( XD + XND)

(1)

where Xp is the measure of the dominant side; Xyp is
the measure of the non-dominant side.

The authors deemed it inappropriate to calculate an
asymmetry index for the continuous data; the use of a
single value to represent differences between two con-
tinuous data sets would be subject to the limitations of a
discrete analysis that we were attempting to avoid.

An intraclass correlation coefficient (ICC (3,k)) was
used to examine the test-retest reliability of peak values
for each variable. The ICC classifications of Ford and
colleagues [39] (<0.4 poor, 0.4—0.75 fair to good, >0.75
excellent) were employed to describe the range of values
obtained.

The significance level was set at o =0.05. Data pro-
cessing and statistical analyses were performed using
MATLAB (R2012a, MathWorks Inc., USA).

Asymmetry Index % =

Results

Discrete point findings for the drop landing, hurdle hop
and cut are displayed in Tables 1, 2 and 3, respectively.
Peak variable magnitudes, asymmetry index and the
findings of tests of significant difference between domin-
ant and non-dominant sides (with effect sizes) are pre-
sented. The vast majority of variables displayed no
statistically significant asymmetries (p > 0.05) in the drop
landing (14/15), hurdle hop (16/17) and cut (27/28).
Asymmetry indexes for these variables however ranged
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Table 1 Drop landing discrete point findings — inter-limb differences in peak variable magnitudes during the eccentric phase

Variable Dominant Non-dominant Diff Al% p value Effect size
Ankle angles (deg)

DorsiF (+)/PlantF(-) 184+28 194+38 1.0 5 046 0.28
Ever(+)/ Inv(-) 57+t24 50+£22 0.7 17 039 —-032
Ankle moments (Nm/kg)

PlantF(+)/DorsiF(-) 27+04 28+06 0.1 4 0.39 032
Ever(+)/ Inv(-) -01+02 -02£02 0.1 67 052 -0.24
Knee angles (deg)

Flex(+)/Ext(-) 66.6+88 66.3+80 03 1 093 -0.03
Var(+)/Valg(-) 43+56 76+85 33 143 022 046
Knee moments (Nm/kg)

Ext (+)/Flex(-) 31+04 31£03 0.0 0 0.95 0.02
Valg(+)/Var(-) 19+04 20£05 0.1 5 0.56 022
Hip angles (deg)

Flex(+)/Ext(-) 593+£109 594 +9.1 0.1 0 0.98 0.01
Add(+)/ Ab(-) 93£56 100£3.0 0.7 19 0.70 0.15
Hip moments (Nm/kg)

Ext (+)/Flex(-) 54+20 50£13 04 8 047 -0.27
Ab(+)/Add(-) 27+07 22+08 05 20 0.09 -0.63
Pelvis angles (deg)

AntT(4)/PostT(-) 13.8+80 145+75 0.7 8 0.79 0.10
Contra Drop(+)/Contra Lift(-) -12.1+40 -89 +34* 32 31 0.02 0.80
Ground reaction force (N/kg)

Vertical 43.7+5.1 448 +6.6 1.1 3 061 0.19

*Significant inter-limb difference (p < 0.05)
Diff: difference; Al: asymmetry index; Sig: significance

DorsiF: dorsiflexion; PlantF: plantarflexion; Ever: eversion; Inv: inversion; Flex: flexion; Ext: extension; Var: varus; Val: valgus; Add: adduction; Ab: abduction; AntT:

anterior tilt; PostT: posterior tilt; Contra: contralateral

from 0 to 143 % in the drop landing, 1-264 % in the
hurdle hop and 1-49 % in the cut.

Table 4 summarises the three variables that did display
statistically significant (p <0.05) asymmetries in the
discrete point analysis. Two differences were associated
with the pelvis, one in the drop landing and one in the
hurdle hop. There was significantly greater pelvis contra-
lateral hip lift (p <0.05) when landing on the dominant
leg during the drop landing. When landing on the non-
dominant leg during the hurdle hop, there was signifi-
cantly (p < 0.05) greater pelvis contralateral drop. In the
cut, ankle internal rotation moments were significantly
(p <0.05) greater on the non-dominant side during the
eccentric phase.

For the ACP, Figs. 2, 3, 4 and 5 display group mean
wave-forms for all variables in the drop landing, hurdle
hop and cut, respectively. Areas of the wave-form that
displayed significant differences between dominant and
non-dominant leg are highlighted. The majority of vari-
ables under examination displayed no significant asym-
metries in the drop landing (13/15), hurdle hop (16/17)

or cut (26/28). Those variables that did display signifi-
cant differences (p <0.05) are summarised in Table 5.
For the drop landing on the dominant leg there was sig-
nificantly greater hip abductor moments early in the ec-
centric phase (p=0.02, effect size=0.62) and more
pelvis contralateral lift from 52 % of the movement on-
wards (p=0.04, effect size=0.66). There was signifi-
cantly greater contralateral pelvic drop on the non-
dominant side throughout the hop test (p = 0.01 - 0.02, ef-
fect size = 0.88). In the cut, ankle internal rotation moments
were significantly greater in the non-dominant ankle (p =
0.02 — 0.04, effect size = 0.52) from 23-38 % of the move-
ment. The ankle joint was also significantly more dorsi-
flexed on the non-dominant side during the latter stages
(78-94 %) of the cut push-off (p = 0.011, effect size = 0.57).
The test-retest reliability findings for variables in the
drop landing, hurdle hop and cut are detailed in
Additional file 6: Table S3. There were no significant dif-
ferences in reliability scores between limbs so the values
provided in Additional file 6: Table S3 are the mean ICC
values of the dominant and non-dominant sides. All
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Table 2 Hurdle hop discrete point findings — inter-limb differences in peak variable magnitudes during the eccentric phase

Variable Dominant Non-dominant Diff Al% p value Effect size
Ankle angles (deg)

DorsiF (+)/PlantF(-) 16.8+4.2 178+ 44 1.0 5 0.58 0.21
Ever(+)/ Inv(-) 45424 42+26 03 8 0.73 -0.13
Ankle moments (Nm/kg)

PlantF(+)/DorsiF(-) 34+05 34+05 0.0 0 0.86 0.07
Ever(+)/ Inv(-) 04+02 04+02 0.0 0 093 0.04
Knee angles (deg)

Flex(+)/Ext(-) 423+103 433+88 1.0 2 0.79 0.10
Var(+)/Valg(-) -31£56 —-06+5.7 25 132 025 044
Knee moments (Nm/kg)

Ext (+)/Flex(-) 26+0.7 28+05 02 7 0.50 0.26
Valg(+)/Var(-) 1906 21£06 0.2 10 023 0.46
Hip angles (deg)

Flex(+)/Ext(-) 340+65 333+£72 0.7 2 0.79 -0.10
Add(+)/ Ab(-) -81£53 -59+40 22 31 024 045
Hip moments (Nm/kg)

Ext (+)/Flex(-) 29+£10 29+09 0.0 0 1.00 0.00
Ab(+)/Add(-) 15+03 15+04 0.0 0 0.55 023
Pelvis angles (deg)

AntT(4)/PostT(-) 119+44 11.7+43 0.2 2 091 -0.05
Contra Drop(+)/Contra Lift(-) —-14+47 31+40% 45 264 0.01 0.92
Thorax angles (deg)

Flex(+)/Ext(-) 68+79 47 +74 2.1 38 046 029
LatFlex(+)/MedFlex(-) 79+59 87+40 038 10 0.68 0.16
Ground reaction force (N/kg)

Vertical 292 +40 286+26 0.6 2 067 0.16

*Significant inter-limb difference (p < 0.05)
Diff: difference; Al: asymmetry index; Sig: significance

DorsiF: dorsiflexion; PlantF: plantarflexion; Ever: eversion; Inv: inversion; Flex: flexion; Ext: extension; Var: varus; Val: valgus; Add: adduction; Ab: abduction; AntT:
anterior tilt; PostT: posterior tilt; Contra: contralateral; LatFlex: lateral flexion; MedFlex: medial flexion

variables displayed good to excellent reliability (ICC >
0.60) in the drop landing (mean ICC [95 % confidence
intervals (CI)]: 0.89 [0.90, 0.88]), hurdle hop (0.88 [0.89,
0.87]), and cut (0.85 [0.86, 0.84]).

Discussion

Our findings highlighted a clear tendency toward biomech-
anical inter-limb symmetry during multi directional neuro-
muscular challenge tests in a cohort of elite, injury free,
rugby union players. Asymmetries that were identified were
limited to frontal plane pelvis angles and moments in the
drop landing and hurdle hop, alongside ankle sagittal plane
angle and internal rotation moment in the cut. The analysis
of characterising phases (ACP) identified two additional
asymmetries not identified in the discrete point analysis.
Previous investigations of symmetry in elite athletes have
utilised tests such as isokinetic dynamometry [40] but these

are uni-planar assessments of a single joint, which do not
have immediate relevance to athletic movement. Con-
versely, studies that have examined more dynamic tasks like
running have done so only in linear running at a submaxi-
mal pace or with sub-elite athletes [6].

Hip eccentric abductor moment in the drop landing and
ankle dorsiflexion angle in the cut (Tables 4 and 5) were
found to be asymmetrical in the ACP, but not in the
discrete point analysis. It would appear that these asym-
metries were missed in the discrete analysis because the
phase of the movement where the difference lay did not
coincide with their peak magnitude (Figs. 2 and 4). Similar
to work by Richter and colleagues [37] and Shorter and
colleagues [41], our findings highlight the benefit of using
continuous movement plane analysis techniques when
examining biomechanical data as they do not require a
priori knowledge of which event/phase to analyse.
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Table 3 Running cut discrete point findings — inter-limb differences in peak variable magnitudes during the eccentric phase

Variable Dominant Non-dominant Diff Al% p value Effect size
Ankle angles (deg)

DorsiF (+)/PlantF(-) 1M1+76 120+73 09 8 0.28 041
Ever(+)/ Inv(-) 54+24 45+27 09 17 039 033
INtR(+)/ExtR(-) -335+£132 -29.1+£124 44 14 0.37 0.35
Ankle moments (Nm/kg)

PlantF(+)/DorsiF(-) 19+04 20+04 0.1 5 0.59 021
Ever(+)/ Inv(-) 07£02 0.7£0.1 0.0 0 091 0.04
INtR(+)/ExtR(-) 0.1+£0.1 02+01* 0.1 67 0.04 0.74
Knee angles (deg)

Flex(+)/Ext(-) 574+£60 603+102 29 5 037 0.35
Var(+)/Valg(-) -75+50 —-6.1+7.1 14 21 0.54 0.23
INtR(+)/ ExtR(-) 212+94 247 +105 35 15 0.36 035
Knee moments (Nm/kg)

Ext (+)/Flex(-) 26+05 25+06 0.1 4 0.84 0.08
Valg(+)/Var(-) -25+10 -23£08 02 8 0.55 0.23
INtR(+)/ExtR(-) 04+0.1 03+0.2 0.1 29 0.23 046
Hip angles (deg)

Flex(+)/Ext(-) 451+£119 494+ 159 43 9 042 031
Add(+)/ Ab(-) -179+6.7 -180+76 0.1 1 0.96 0.02
INtR(+)/ExtR(-) 224+101 272+125 4.8 20 0.27 042
Hip moments (Nm/kg)

Ext (+)/Flex(-) 40+14 45+16 0.5 12 0.34 037
Ab(+)/Add(-) -36+14 -33+13 03 9 0.61 0.20
INtR(+)/ExtR(-) 13+05 12+05 0.1 8 091 0.04
Pelvis angles (deg)

AntT(4)/PostT(-) 22+51 37+75 15 49 0.56 0.23
Contra Drop(+)/Contra Lift(-) 150+59 144+78 0.6 4 0.81 0.09
INtR(+)/ExtR(-) =11.1£13. =-112+£123 0.1 1 0.98 0.01
Thorax angles (deg)

Flex(+)/Ext(-) 305+58 285164 20 7 041 032
LatFlex(+)/MedFlex(-) 210+79 218+55 038 4 0.75 0.12
ExtR(+)/ IntR(-) -118+66 -116+56 0.2 2 0.93 0.03
Ground reaction forces (N/kg)

Vertical 151+29 169+44 18 1 0.21 048
Medial/lateral 13+£08 15+£1.1 0.2 14 0.52 0.25
Longitudinal 95+1.7 102+27 0.7 7 042 0.31
Timing (s)

Ground contact time 0.32+0.04 0.35+0.06 0.03 9 0.1 0.6

*Significant inter-limb difference (p < 0.05)

Diff: difference; Al: asymmetry index; Sig: significance
DorsiF: dorsiflexion; PlantF: plantarflexion; Ever: eversion; Inv: inversion; IntR: internal rotation; ExtR: external rotation; Flex: flexion; Ext: extension; Var: varus; Val:

valgus; Add: adduction; Ab: abduction; AntT: anterior tilt; PostT: posterior tilt; Contra: contralateral; LatFlex: lateral flexion; MedFlex: medial flexion

While the majority of variables exhibited no significant
asymmetry, several exhibited a large asymmetry index
(AI) in the discrete point analysis; Al ranges for

symmetrical variables in the drop, hop and cut were 0—
143 %, 0-264 % and 0-49 %, respectively (Tables 1-3).
These differences are likely due to the Al calculation being
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Table 4 Significant inter-limb differences (p < 0.05) as identified in the discrete point analysis
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Dominant Mean (£SD) Non-dominant Mean (£SD) Difference p value Effect size Al%
Drop landing
Pelvis contralateral drop(+)/lift(-) (deg) -12.1 (4.0) -89 (34) 32 (D>ND) 0.02 0.80 31
Hurdle Hop
Pelvis contralateral drop(+)/lift(-) (deg) -14 4.7) 3.1 (4.1) 45 (ND>D) 0.01 092 264
Cut
Ankle internal rotation moment (Nm/kg) 0.1(0.1) 0.2 (0.1) 0.1 (ND > D) 0.04 0.74 67
Al: asymmetry index; D: dominant; ND: non-dominant
Sagittal Frontal
80.0 1 20.0 7
60.0
10.0
40.0 - XN
’/r m
Angles (°) 20.0 4 aas 00 IURRTTTTRRPPRIETLLEEE
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/ Non —
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-40.0 - -200 -
- 3.0 1
60 = Ankle
Knee
4.0 2.0 Hip
N = Pelvis
20 / \ W
m
Moments J 1.0 1
-1 /
(Nm.kg?) 0o P
0.0 =g
-2.0
a0 4 -1.0 -
0 25 50 75 100 0 25 50 75 100
% of
Movement
* Significant difference between pelvis angles on the dominant and non-dominant sides, between 53-100% of the movement.
Significant difference between hip moments on the dominant and non-dominant sides between 12-16% of the movement.
Fig. 2 Group mean wave-forms for kinetic and kinematic variables in the drop landing. Sagittal angles: ankle dorsiflexion (+)/plantarflexion (-);
knee flexion (+)/extension (=); hip flexion (+)/extension (=); pelvis anterior tilt (+)/posterior tilt(—). Frontal angles: ankle eversion (+)/inversion (-);
knee varus (+)/valgus (-); hip adduction (+)/abduction (-); pelvis contralateral drop (+)/contralateral lift (-). Sagittal moments: ankle plantarflexion
(+)/dorsiflexion (=); knee extension (+)/flexion (-); hip extension (+)/flexion (=). Frontal moments: ankle eversion (+)/inversion (-); knee valgus
(+)/varus (-); hip abduction (+)/ adduction ()
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Fig. 3 Group mean wave-forms for kinetic and kinematic variables in the h

lateral flexion (+)/ medial flexion (—) Sagittal moments: ankle plantarflexion
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(1-50% eccentric phase; 51-100% concentric phase)

* Significant difference between pelvis angles on the dominant and non-dominant sides, between 1-100% of the movement.

flexion (+)/extension (=); hip flexion (+)/extension (-); pelvis anterior tilt (+)/posterior tilt(—); thorax flexion (+)/thorax extension (). Frontal angles:
ankle eversion (+)/inversion (-); knee varus (+)/valgus (-); hip adduction (+)/abduction (=); pelvis contralateral drop (+)/contralateral lift (-); thorax

(+)/flexion (=). Frontal moments: ankle eversion (+)/inversion (=); knee valgus (+)/varus (=); hip abduction (+)/ adduction (-)

urdle hop. Sagittal angles: ankle dorsiflexion (+)/plantarflexion (-); knee

(+)/dorsiflexion (=); knee extension (+)/flexion (-); hip extension

overly sensitive to variables with small magnitudes and
tending to inflate their score as a result [24]. In the drop
landing, for example, knee varus angle and knee flexion
angle differed by similar amounts between dominant and
non-dominant legs (3° and 2°, respectively), but the Als
for these variables were notably different (143 % and 3 %,
respectively). This is due to the magnitudes of knee varus
being approximately ten times smaller than the magni-
tudes of knee flexion (Table 1). It appears that frontal
plane variables in the drop and hop are particularly af-
fected by the inflation of Al scores due to small variable
magnitudes (Tables 1 and 2). If frontal plane variables are
excluded, ranges of AI fall to 0-31 % in the drop landing
and 0-7 % in the hurdle hop which are closer to the 0—
49 % in the cut and the 3-50 % found in studies of straight

line running [6]. These findings, which are similar to those
of Herzog and colleagues [24] in gait analysis, suggest that
the use of Als to provide normative symmetry values for
biomechanical variables of small magnitude (e.g. knee
varus/valgus) is questionable. As an alternative it may be
more appropriate to simply examine magnitude differ-
ences between limbs for each variable of interest. To this
end the results presented in Tables 1-3 for discrete points,
and in Figs. 2—4 for the complete movement phase, pro-
vide useful normative values for rehabilitation specialists
who are undertaking injury screening testing or monitor-
ing rehabilitation progress in similar population groups.

In total, five variables were found to display significant
inter-limb asymmetries. Pelvis contralateral lift and hip
eccentric abductor moment in the drop landing were
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* Significant difference between ankle angles on the dominant and non-dominant sides, between 78-94% of the movement.
T Significant difference between ankle moments on the dominant and non-dominant sides between 23-38% of the movement.

Fig. 4 Group mean wave-forms for kinetic and kinematic variables in the cut. Sagittal angles: ankle dorsiflexion (+)/plantarflexion (-); knee flexion
(+)/extension (—); hip flexion (+)/extension (-); pelvis anterior tilt (+)/posterior tilt(-); thorax flexion (+)/thorax extension (). Frontal angles: ankle
eversion (+)/inversion (=); knee varus (+)/valgus (=); hip adduction (+)/abduction (-); pelvis contralateral drop (+)/contralateral lift (—); thorax lat-
eral flexion (+)/ medial flexion (). Transverse angles: ankle internal rotation (+)/ external rotation(-); knee internal rotation(+)/ external rotation(-);
hip internal rotation (+)/ hip external rotation (=); pelvis internal rotation(+)/ external rotation(—); thorax external rotation (+)/internal rotation (-).

Sagittal moments: ankle plantarflexion (+)/dorsiflexion (=); knee extension (+)/flexion (=); hip extension (+)/flexion (=). Frontal moments: ankle
eversion (+)/inversion (=); knee valgus (+)/varus (=); hip abduction (+)/ adduction (). Transverse moments: ankle internal rotation (+)/external
rotation (-); knee internal rotation (+)/external rotation(—); hip internal rotation(+)/external rotation (-)

greater on the dominant side, while pelvis contralateral
drop in the hurdle hop, ankle eccentric internal rotation
moment and ankle dorsiflexion angle in the cut were
all greater on the non-dominant side (Tables 4 and 5).
It would appear that in the drop landing, participants
were able to generate larger eccentric hip abductor mo-
ments on the dominant leg early in the landing (Table 5)
which allowed them to achieve a greater contralateral
pelvis lift later in the movement (Table 5). This may be
as a result of a different landing strategy on the domin-
ant side as a result of preferential use in training [26,
42]. Vittasalo and colleagues [26] found that training
history influences the timing and magnitude of lower
extremity muscle activation on landing in a jump. They
found that trained athletes activated their lower extremity
muscles earlier and to a greater extent than physically ac-
tive controls [26].

Preferential use of the dominant limb during training
may also explain, at least in part, the asymmetries ob-
served in the hurdle hop, a movement which places an
emphasis on frontal plane movement control. Partici-
pants exhibited a significant contralateral pelvis drop on
the non-dominant limb but in contrast maintained a
contralateral lift throughout the movement on the dom-
inant limb (Fig. 3). This particular asymmetry had the
largest effect size of all significant findings (discrete ana-
lysis = 0.93; ACP = 0.88), and was present throughout the
entire movement phase (Table 5 and Fig. 3). A contra-
lateral pelvis drop on the non-dominant leg may be as
a result of poorer neuromuscular control produced by
the hip abductors (e.g. gluteus medius) [43-46] and
may indicate a reduced ability to protect the knee from
the excessive frontal plane moments associated with in-
jury [13].
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Fig. 5 Group mean wave forms for ground reaction forces in the drop landing, hurdle hop and cut
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In the cut, the non-dominant side exhibited significantly
greater ankle eccentric internal rotation moments early in
the movement (Tables 5) and a more dorsiflexed/less plan-
tar flexed ankle during the later phase of the movement
(Table 5 and Fig. 4). Further examination of the data identi-
fied a highly significant correlation (r=0.86, p <0.01) be-
tween these variables indicating that the greater ankle
internal rotation moments are related to the greater ankle
dorsiflexion/less plantarflexion. The actual relevance of
these asymmetries in elite athletes from an injury develop-
ment standpoint, as with all of the asymmetries discussed
here, requires further investigation with prospective studies.
In addition, it is important to emphasise that while our
findings illustrate that in an uninjured group of elite players
some dominant versus non-dominant asymmetries may

exist, the vast majority of variables exhibited no significant
asymmetries. This provides a very valuable set of normative
data with which to examine whether asymmetries in indi-
viduals are indicative of a predisposition to injury.

While the current study provides useful normative
data for the movements examined, it is accepted as a
limitation that the sample size was of twenty single-
sport multidirectional athletes. A replication of this
study with a larger number of participants, and with
players from different sports, would enhance the know-
ledge base beyond this study. A potential limitation of
the current study is that the neuromuscular challenge
tests examined were all pre-planned, with no indecision
element. It may be argued that movement in response to
a sudden stimulus may elicit different and more sport

Table 5 Significant inter-limb differences (p < 0.05) as identified in the analysis of characterising phases

Variable Difference Percentage of movement (%) p value Effect size
Drop landing

Hip abductor moment (Nm/kg) D>ND 12-16 0.02 0.62
Pelvis contralateral lift (deg) D>ND 53-100 0.04 0.66
Hurdle Hop

Pelvis contralateral drop (deg) ND >D 1-100 0.02 0.88

Cut

Ankle internal rotation moment (Nm/kg) ND > D 23-38 0.04 052
Ankle dorsiflexion (deg) ND > D 78 - 94 0.01 0.57

D: dominant; ND: non-dominant
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specific movement patterns and thus may potentially
provide a greater test of symmetry [47, 48]. Based on
findings from a meta-analysis undertaken by Brown and
colleagues [49], substantial increases in frontal plane
knee abductor moments (approximately 63 %) and knee
internal rotator moments (up to 127 %) may be expected
when undertaking un-planned in comparison to pre-
planned cuts. Knee angles in all three movement planes
would also be expected to increase [49]. Increases such
as this could facilitate the identification of asymmetries
that may be masked in less challenging pre-planned cuts.

Conclusions

Elite, injury free, rugby union players tend to exhibit bi-
lateral symmetry across a broad range of biomechanical
variables in a single leg drop landing, a single leg hurdle
hop and a cutting manoeuvre. This study provides useful
normative values for inter-limb symmetry in these
movement tests. In addition it is recommended to utilise
data analysis techniques that allow an examination of
continuous data as opposed to discrete points; a discrete
point analysis was unable to detect two of the five asym-
metries identified. Our findings highlighted that the use
of an asymmetry index as a standard measure of sym-
metry in biomechanical variables is questionable due to
its sensitivity to variable magnitude. Asymmetries identi-
fied in this study were limited to frontal plane pelvis an-
gles and moments in the drop landing and hurdle hop,
alongside ankle sagittal plane angles and internal rota-
tion moment in the cut. Prospective studies are required
to establish the relevance of these biomechanical asym-
metries in the development of injuries.

Additional files

Additional file 1: Drop landing clip. Video clip of the drop landing
movement test.

Additional file 2: Hurdle hop clip. Video clip of the hurdle hop
movement test.

Additional file 3: Running cut clip. Video clip of the running cut
movement test.

Additional file 4: Table S1. Hurdle hop discrete point findings—inter-
limb differences in peak variable magnitudes during the concentric
phase. Inter-limb differences in peak variable magnitudes during the
concentric phase of the hurdle hop movement.

Additional file 5: Table S2. Running cut discrete point
findings—inter-limb differences in peak variable magnitudes during the
concentric phase. Inter-limb differences in peak variable magnitudes
during the concentric phase of the running cut movement.

Additional file 6: Table S3. Intraclass correlation coefficient (test-retest
reliability) of measures in the drop landing, hurdle hop and cut. Test-retest
reliability scores of measures in the drop landing, hurdle hop and cut.

Abbreviations
ACP: Analysis of characterising phases; 3D: Three dimensional; Al: Asymmetry
index.

Page 12 of 13

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

All authors have been involved in revising the manuscript for important
intellectual content. BM contributed to study concept and design, collected
data, assisted with data analysis, data interpretation and drafted the
manuscript. AFM, EF and EK contributed to study concept, design and data
interpretation. KM and SS contributed to study concept, data interpretation
and assisted with drafting the manuscript. SG assisted with data collection,
data analysis and manuscript drafting. CR undertook data analysis and
contributed to data interpretation. All authors read and approved the final
manuscript.

Acknowledgements

This study has emanated from research funding supported in part by a
research grant from Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289. The authors would like to thank David Breen for his help in
collecting the data and Dr Carson Farmer for his help with figure generation.
The authors have received consent from the individual seen in Additional file
1,2 and 3 that these movie clips can be published.

Author details

'Sports Medicine Department, Sports Surgery Clinic, Santry Demesne, Dublin,
Ireland. ?School of Health and Human Performance, Dublin City University,
Dublin, Ireland. *Department of Life Sciences, Roehampton University,
London, UK. “Centre for Health, Exercise and Sports Medicine, University of
Melbourne, Melbourne, Australia. *Insight Centre for Data Analytics, Dublin
City University, Dublin, Ireland. ®Department of Medicine, University College
Cork, Cork, Ireland.

Received: 25 November 2014 Accepted: 12 May 2015
Published online: 19 June 2015

References

1. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be
predicted by a preseason functional movement screen? North Am J Sports
Phys Ther. 2007;2:147.

2. Lockie RG, Schultz AB, Callaghan SJ, Jordan CA, Luczo TM, Jeffriess MD. A
preliminary investigation into the relationship between functional
movement screen scores and athletic physical performance in female team
sport athletes. Biol Sport. 2015;32:41-51.

3. Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star excursion balance test
as a predictor of lower extremity injury in high school basketball players. J
Orthop Sports Phys Ther. 2006;36:911-9.

4. Hodges SJ, Patrick RJ, Reiser RF. Effects of fatigue on bilateral ground
reaction force asymmetries during the squat exercise. J Strength Cond Res.
2011;25:3107-17.

5. Hickey KC, Quatman CE, Myer GD, Ford KR, Brosky JA, Hewett TE.
Methodological report: dynamic field tests used in an NFL combine setting
to identify lower-extremity functional asymmetries. J Strength Cond Res.
2009;23:2500-6.

6. Zifchock RA, Davis |, Hamill J. Kinetic asymmetry in female runners with and
without retrospective tibial stress fractures. J Biomech. 2006;39:2792-7.

7. Hewett TE, Myer GD, Ford KR, Heidt Jr RS, Colosimo AJ, McLean SG, et al.
Biomechanical measures of neuromuscular control and valgus loading of
the knee predict anterior cruciate ligament injury risk in female athletes: a
prospective study. Am J Sports Med. 2005;33:492-501.

8. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al.
Biomechanical measures during landing and postural stability predict
second anterior cruciate ligament injury after anterior cruciate ligament
reconstruction and return to sport. Am J Sports Med. 2010;38:1968-78.

9. Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A
comparison of dynamic coronal plane excursion between matched male
and female athletes when performing single leg landings. Clin Biomech.
2006;21:33-40.

10.  Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and
power deficiencies associated with lateral ankle ligament injury. J Orthop
Sports Phys Ther. 1997;26:78-86.


http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s1.mov
http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s2.mov
http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s3.mov
http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s4.docx
http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s5.docx
http://biomedcentral.com/content/supplementary/s13102-015-0006-9-s6.docx

Marshall et al. BMC Sports Science, Medicine, and Rehabilitation (2015) 7:13

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

Cowan DN, Jones BH, Frykman PN, Polly DW, Harman EA, Rosenstein RM,
et al. Lower limb morphology and risk of overuse injury among male
infantry trainees. Med Sci Sports Exerc. 1996;28:945-52.

Zifchock RA, Davis |, Higginson J, McCaw S, Royer T. Side-to-side differences
in overuse running injury susceptibility: a retrospective study. Hum Mov Sci.
2008;27:888-902.

Powers CM. The influence of abnormal hip mechanics on knee injury: a
biomechanical perspective. J Orthop Sports Phys Ther. 2010;40:42-51.
Zazulak BT, Hewett TE, Reeves P, Goldberg B, Cholewicki J. Deficits in
neuromuscular control of the trunk predict knee injury risk a prospective
biomechanical-epidemiologic study. Am J Sports Med. 2007;35:1123-30.
Dayakidis MK, Boudolos K. Ground reaction force data in functional ankle
instability during two cutting movements. Clin Biomech. 2006;21:405-11.
Willems T, Witvrouw E, Delbaere K, De Cock A, De Clercq D. Relationship
between gait biomechanics and inversion sprains: a prospective study of
risk factors. Gait Posture. 2005,21:379-87.

Cibulka MT, Threlkeld-Watkins J. Patellofemoral pain and asymmetrical hip
rotation. Phys Ther. 2005,85:1201-7.

Zajac FE. Muscle coordination of movement: a perspective. J Biomech.
1993,26:109-24.

Karamanidis K, Arampatzis A, Bruggemann GP. Symmetry and
reproducibility of kinematic parameters during various running techniques.
Med Sci Sports Exerc. 2003;35:1009-16.

Edwards S, Steele JR, Cook JL, Purdam CR, McGhee DE. Lower limb
movement symmetry cannot be assumed when investigating the stop-
jump landing. Med Sci Sports Exerc. 2012;44:1123-30.

Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting
technique and knee abduction loading: implications for ACL prevention
exercises. Br J Sports Med. 2013;48:779-83.

Kimura Y, Ishibashi Y, Tsuda E, Yamamoto Y, Hayashi Y, Sato S. Increased
knee valgus alignment and moment during single-leg landing after
overhead stroke as a potential risk factor of anterior cruciate ligament injury
in badminton. Br J Sports Med. 2012;46:207-13.

Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the knee
joint during running and cutting maneuvers. Med Sci Sports Exerc.
2001;33:1168-75.

Herzog W, Nigg BM, Read LJ, Olsson E. Asymmetries in ground reaction
force patterns in normal human gait. Med Sci Sports Exerc. 1989,21:110-4.
Pappas E, Carpes FP. Lower extremity kinematic asymmetry in male and female
athletes performing jump-landing tasks. J Sci Med Sport. 2012;15:87-92.
Viitasalo JT, Salo A, Lahtinen J. Neuromuscular functioning of athletes and non-
athletes in the drop jump. Eur J Appl Physiol Occup Physiol. 1998;78:432-40.
Richter C, O'Connor NE, Marshall B, Moran K. Analysis of Characterizing
Phases on Waveforms - An Application to Vertical Jumps. J Appl Biomech.
2013;30(2):316-21.

Ramsay J, Silverman BW. Functional data analysis. 2nd ed. New York:
Springer; 2005.

Laughlin WA, Weinhand| JT, Kernozek TW, Cobb SC, Keenan KG, O'Connor
KM. The effects of single-leg landing technique on ACL loading. J Biomech.
2011;44:1845-51.

Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE.
Gender comparison of hip muscle activity during single-leg landing. J
Orthop Sports Phys Ther. 2005;35:292-9.

Marshall BM, Franklyn-Miller AD, King EA, Moran KA, Strike SC, Falvey EC.
Biomechanical factors associated with time to complete a change of direction
cutting maneuver. J Strength Cond Res. 2014;28:2845-51.

Kristianslund E, Krosshaug T, van den Bogert AJ. Artefacts in measuring joint
moments may lead to incorrect clinical conclusions: the nexus between
science (biomechanics) and sports injury prevention! Br J Sports Med.
2013;47:470-3.

Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-specific
sidestep cutting: implications for anterior cruciate ligament injury risk
screening. Am J Sports Med. 2013;41:684-8.

Winter DA. Biomechanics and motor control of human movement. 4th ed.
New Jersey: J. Wiley; 2009.

Hammill J, Selbie WS, Kepple TM. Three-Dimensional Kinematics. In: Robertson
DGE, Caldwell GE, Hamill J, Leeds KG, editors. Research Methods in Biomechanics.
2nd ed. United Kingdom: Human Kinetics; 2014. p. 35-60.

Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in
athletes after anterior cruciate ligament reconstruction. Am J Sports Med.
2013;41:216-24.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Page 13 of 13

Richter C, NE OC, Marshall B, Moran K. Comparison of discrete-point vs.
dimensionality-reduction techniques for describing performance-related
aspects of maximal vertical jumping. J Biomech. 2014;47:3012-7.

Carpes FP, Mota CB, Faria IE. On the bilateral asymmetry during running and
cycling - a review considering leg preference. Phys Ther Sport. 2010;11:136-42.
Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion analysis:
implications for longitudinal analyses. Med Sci Sports Exerc. 2007;39:2021-8.
Zakas A. Bilateral isokinetic peak torque of quadriceps and hamstring
muscles in professional soccer players with dominance on one or both two
sides. J Sports Med Phys Fit. 2006;46:28-35.

Shorter KA, Polk JD, Rosengren KS, Hsiao-Wecksler ET. A new approach to
detecting asymmetries in gait. Clin Biomech. 2008;23:459-67.
Theoharopoulos A, Tsitskaris G. Isokinetic evaluation of the ankle plantar
and dorsiflexion strength to determine the dominant limb in basketball
players. Isokinet Exerc Sci. 2000,8:181-6.

Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al.
Understanding and preventing noncontact anterior cruciate ligament
injuries: a review of the Hunt Valley Il meeting, January 2005. Am J Sports
Med. 2006;34:1512-32.

Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee
kinematics, hip strength, and gluteal muscle activation during a single-leg squat
in males and females with and without patellofemoral pain syndrome. J Orthop
Sports Phys Ther. 2012;42:491-501.

Nakagawa TH, Moriya ET, Maciel CD, Serrao AF. Frontal plane biomechanics
in males and females with and without patellofemoral pain. Med Sci Sports
Exerc. 2012;44:1747-55.

Takacs J, Hunt MA. The effect of contralateral pelvic drop and trunk lean on
frontal plane knee biomechanics during single limb standing. J Biomech.
2012;45:2791-6.

O'Connor KM, Monteiro SK, Hoelker IA. Comparison of selected lateral cutting
activities used to assess ACL injury risk. J Appl Biomech. 2009;25:9-21.

Fedie R, Carlstedt K, Willson JD, Kernozek TW. Effect of attending to a ball
during a side-cut maneuver on lower extremity biomechanics in male and
female athletes. Sports Biomech. 2010,9:165-77.

Brown SR, Brughelli M, Hume PA. Knee mechanics during planned and
unplanned sidestepping: a systematic review and meta-analysis. Sports Med.
2014;44:1573-88.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Participants
	Experimental protocol
	Data acquisition and analysis
	Statistical analysis

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



