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Validity of sports watches when estimating
energy expenditure during running
Lilian Roos1,2* , Wolfgang Taube2, Nadja Beeler1 and Thomas Wyss1

Abstract

Background: The aim of this study was to assess the accuracy of three different sport watches in estimating energy
expenditure during aerobic and anaerobic running.

Methods: Twenty trained subjects ran at different intensities while wearing three commercial sport watches (Suunto
Ambit2, Garmin Forerunner920XT, and Polar V800). Indirect calorimetry was used as the criterion measure for assessing
energy expenditure. Different formulas were applied to compute energy expenditure from the gas exchange values for
aerobic and anaerobic running.

Results: The accuracy of the energy expenditure estimations was intensity-dependent for all tested watches. During
aerobic running (4–11 km/h), mean absolute percentage error values of −25.16% to +38.09% were observed, with the Polar
V800 performing most accurately (stage 1: −12.20%, stage 2: −3.61%, and stage 3: −4.29%). The Garmin Forerunner920XT
significantly underestimated energy expenditure during the slowest stage (stage 1: −25.16%), whereas, the Suunto Ambit2
significantly overestimated energy expenditure during the two slowest stages (stage 1: 38.09%, stage 2: 36.29%). During
anaerobic running (14–17 km/h), all three watches significantly underestimated energy expenditure by −21.62% to −49.30%.
Therefore, the error in estimating energy expenditure systematically increased as the anaerobic running speed increased.

Conclusions: To estimate energy expenditure during aerobic running, the Polar V800 is recommended. By contrast, the
other two watches either significantly overestimated or underestimated energy expenditure during most running intensities.
The energy expenditure estimations generated during anaerobic exercises revealed large measurement errors in all tested
sport watches. Therefore, the algorithms for estimating energy expenditure during intense activities must be improved
before they can be used to monitor energy expenditure during high-intensity physical activities.
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Background
The amount of energy spent on a specific activity – com-
monly known as energy expenditure (EE) – is important
not only for athletes but also for patients suffering from
obesity or diabetes [1–3]. The term EE is often used with
regard to nutrition, sport science, occupational tasks, and
athlete training, areas in which it is important to monitor
the demands of various physical activities. Especially in
clinical nutrition settings (e.g. monitoring the exercise
activity of obese people), it is important to use devices that
provide accurate EE measurements as these measure-
ments are crucial in determining the amount of calories

that a patient can consume without gaining weight [3].
Similarly, active and lean people may be interested in
obtaining precise EE data during their training sessions.
Therefore, devices that can accurately measure EE are
useful.
Indirect calorimetry can be performed by using

stationary or portable spirometers to measure breath-by-
breath gas exchange, which in turn is analyzed in order
to estimate EE. This reference method measures
activities performed over a duration of 1–3 h and has
been found to be accurate during rest periods and
various levels of exercise intensity [4, 5]. Indirect
calorimetry is considered the most feasible method for
attaining accurate data for short-term physical activity in
a laboratory setting [6]. Another option is to estimate EE
using heart rate (HR) data, due to the linear relationship
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of oxygen consumption and HR [7]. Previous findings
supported HR measurements to be a valid method to as-
sess EE in a laboratory or field setting, EE estimations
were even better when using percentage of HR reserve
or difference between active and resting HR [8]. When
considering different methods for assessing EE, it
becomes obvious that there is a trade-off between accur-
acy, feasibility, and costs [9]. At the same time, factors
such as device usability and movement constraints are
important to consider. For example, sports watches
could constitute the perfect solution as they are user-
friendly, relatively low-priced, non-invasive, and can
provide other important information during a training
session, such as duration, HR, speed, distance and alti-
tude covered [10, 11]. It is important to understand how
accurate sports watches are in assessing EE during
varying levels of exercise intensity. For researchers to
make informed decisions about which products to in-
clude in a study or trial. This information is equally
relevant for professional and recreational athletes who
use the popular sports watches to monitor different
variables during their training sessions. However, the ac-
curacy of the newest sports watches (season 2015) in
assessing EE is thus far unknown. The companies devel-
oping these devices use proprietary algorithms to esti-
mate EE. Generally, these algorithms consider variables
such as age, weight, height, sex, maximal heart rate
(HRmax), and maximal oxygen uptake (VO2peak) in com-
puting an individual’s EE. A recent study reported that
prediction accuracy of EE during running was signifi-
cantly increased when real-time running speed was
included [12]. The newer generation of sports watches
also have built-in accelerometers, so it is likely that ac-
celeration data is factored into the algorithm as well.
Even some earlier devices from different manufacturers
had accelerometers implemented. However, sports watch
developers prefer to keep their algorithms secret, and
there exists only limited published research regarding
the development, validity, and reliability of EE estima-
tion algorithms in sports watches [8, 10, 13], especially
with regard to vigorous physical activity and the inclu-
sion of accelerometer data into the algorithms.
Therefore, this study aims to validate the EE estimations
of three sports watches (Suunto Ambit2, Garmin
Forerunner920XT, and Polar V800), as these manufac-
turers are the top competitors on the market, during
low, moderate, and high-intensity running against
estimates of EE from indirect calorimetry as the criterion
measure.

Methods
Study design
Each participant visited the lab twice. The visits were at
least 2 days but no more than 2 weeks apart and took

place at the same hour of the day. The participants were
asked to avoid intense and strenuous training the day
before the tests. Furthermore, the participants were
asked to abstain from alcohol 24 h and from food and
drinks with caffeine for the 6 h before each test.
During their first visit, the athletes were informed

about the study procedures, anthropometric data were
measured, and the preliminary test was performed. The
height and weight measurements were taken to the near-
est 0.01 m using a stadiometer and to the nearest
0.01 kg using a calibrated scale (Model 213 and Model
877, respectively; seca GmbH, Hamburg, Germany). The
two running trials were performed on a treadmill (Model
Mercury, h/p/cosmos sports & medical GmbH,
Nussdorf-Traunstein, Germany) with an increment of
1% to simulate outdoor running [14]. First, the partici-
pants participated in a submaximal incremental exercise
test of maximally ten 5 min stages, starting at 5 km/h
and with an incremental increase of 1.5 km/h per stage
[15, 16]. The test was stopped when the participants
reached a respiratory exchange ratio (RER) of ≥1.0
(mean over 1 min). Afterwards, the participants rested
for 8 min. Second, the participants performed an all-out
test to assess their HRmax and VO2peak. The all-out test
started at 7 km/h, the first three stages lasted 1 min
each, and the incremental increase was 1 km/h. The
following stages lasted 30 s each, with 0.5 km/h incre-
mental increases until volitional exhaustion [17]. During
the last 15 s of each running stage, the participants were
asked to rate their perceived exertion on a Borg scale
ranging from 6 to 20 [18]. From the speed at VO2peak

(vVO2peak), the individual’s relative speeds for the test on
the second visit were calculated at 30%, 50%, 70%, 90%,
and 110% of vVO2peak. To measure breath-by-breath
automatic gas exchange, the Moxus Modular Metabolic
System (AEI Technologies, Pittsburg PA, USA) was
used. Several authors previously validated the Moxus
Modular Metabolic System against the Douglas bag
method and reported adequate to high reliability and
reasonable validity during submaximal and maximal ac-
tivities [4, 19].
On the second testing day, the participants were each

fitted with three sports watches (Suunto Ambit2, Suunto
Oy, Vantaa, Finland; Garmin Forerunner920XT, Garmin
International Inc., Olathe KS, USA; Polar V800, Polar
Electro Oy, Kempele, Finland) – and their corresponding
HR monitors. The watches were set according to each
individual’s age, height, weight, HRmax, and sex (Polar
V800 only). The participants wore all three watches at
the same time. Each participant wore two watches on
the left wrist and forearm, the third watch on the right
wrist, and the heart rate monitors (paired with the corre-
sponding watch) around the chest. The positioning of
the watches and the localization of the paired heart rate
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monitors was randomized. First, the participants were
asked to stand still on the treadmill for 2 min, during
which a baseline measurement was taken before the
treadmill test began. The first three stages were per-
formed at individual running speeds of 30%, 50%, and
70% of vVO2peak and lasted 10 min each, with a 2 min
standing break in-between the stages. The last two
stages, performed at 90% and 110% of vVO2peak, lasted
90 s each, with the same standing break in-between. All
measurement devices were calibrated before each test
and used in accordance with the manufacturer recom-
mendations. The training profile “running” and for
Garmin Forerunner920XT “indoor running” was
selected from each watch’s menu. The watches were sim-
ultaneously started and stopped directly before and after
each stage. The data were saved on the watch and
synchronized using the proprietary online software
(Suunto Movescount, Suunto Oy, Vantaa, Finland;
Garmin Connect, Garmin International Inc., Olathe KS,
USA; Polar Flow, Polar Electro Oy, Kempele, Finland)
on a computer after each test. From there, the individual
caloric values from the five stages were transferred to a
database for further analysis.

Participants
Twenty healthy participants (12 males and 8 females)
volunteered to participate in this study (age 23.90 ±
1.92 years, height 1.74 ± 0.08 m, weight 66.90 ± 10.02 kg,
HRmax 193.10 ± 4.88 bpm, VO2peak 55.75 ± 7.33 ml/
min/kg). All participants were recreational or com-
petitive runners, and none of them had experienced
any injury to their lower extremities within the past
year. Before the first test, the participants were in-
formed about the procedure and aims of the study
and signed a written informed consent form that had
been previously approved by the Institutional Review
Board of the Swiss Federal Institute of Sport
Magglingen. This study meets the principals outlined
in the Declaration of Helsinki.

Data analysis – EE estimation during low to moderate
running intensity
All the data from the watches was normalized to the
unit of kcal/min. Missing values resulting from unsys-
tematic HR monitor failure or malfunction were
replaced using the relative difference (slope) from the
reference mean to the specific watch mean from the
corresponding running stage. For the EE measurements
from the criterion measure, the formula of Elia and
Livesey [20] was used to compute the total EE from the
gas exchange data in kcal/min for the three submaximal
categories (stage 1: 30% vVO2peak, stage 2: 50% vVO2peak,
and stage 3: 70% vVO2peak). These formulas are
commonly accepted for estimating EE during aerobic or

submaximal intensities [6, 20–25]. However, very few stud-
ies have validated these formulas for anaerobic activities.

Data analysis – EE estimation during high-intensity
running
The few studies that have examined high-intensity exer-
cises generally reported low validity with regard to the
criterion measure of indirect calorimetry [6, 26, 27].
Therefore, other methods were needed to overcome
these measurement problems during vigorous physical
activity. Medbo and colleagues [15] first proposed a new
way to assess anaerobic proportions of EE during high-
intensity physical activities. By assuming a linear
relationship between running speed and oxygen uptake,
they were able to interpolate to intensities greater than
the maximal oxygen uptake [15]. From the intrapolated
value at a certain speed or intensity, the measured
oxygen consumption can be subtracted. The difference,
integrated over the duration of the activity, can be used
to estimate the maximal accumulated oxygen deficit
(MAOD). Several authors reported MAOD to be the
most accurate, non-invasive method for determining the
anaerobic proportion of EE during high-intensity activ-
ities [16, 28, 29]. Therefore, the MAOD method was
applied to compute the difference between the measured
breath-by-breath gas exchange and the theoretically
necessary oxygen uptake [15, 28] for the near-maximal
and the supramaximal categories (stage 4: 90% vVO2peak

and stage 5: 110% vVO2peak). Considering the high inten-
sity of these two bouts and the measured RER values of
≥1.0 following these exercises, pure carbohydrates can
be assumed as the muscle energy source. Therefore, the
oxygen values, measured in ml/min, were multiplied by
5.04 kcal/l oxygen [25, 30].

Statistical analysis
The data were tested for normality using the Shapiro-
Wilk test and mean values and standard deviations (SD)
were calculated. The data were analyzed using a
repeated-measures ANOVA with a Bonferroni post-hoc
analysis. The validity of the three watches was initially
investigated using Pearson’s correlation analyses.
Furthermore, mean absolute error (MAE) and mean
absolute percentage error (MAPE) of each watch com-
pared to the criterion measure were calculated. As the
threshold for accurate EE estimations, a MAPE ≤10%
was defined, similar to the definition used by other re-
searchers [11, 31]. The individual error, which was used
specifically to assess inter-individual differences, was
computed with the root mean square error (RMSE).
Bland-Altman plots including 95% limits of agreement
(±1.96 times SD) with their corresponding intercept and
slope were created to graphically represent the data and
to visualize systematic differences in EE estimation [32].
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The level of significance was set at p < 0.05, and the stat-
istical analyses were performed using SPSS 23 (IBM
Corporation, Armonk NY, USA).

Results
Nineteen participants completed both the first and
second test. One male athlete could not finish the
last two stages due to a cold and, therefore, all his
data were excluded from the analysis. Due to
technical issues, 10 EE files (3.51%) from the
watches had to be replaced using relative estimated
data. The descriptive data from the criterion
measure and the three sports watches are presented
in Table 1. The measured EE generally increased
from stage to stage.

EE estimation during low and moderate intensity running
The Pearson’s correlation analysis revealed signifi-
cantly correlated data between the reference values
and the EE values from each watch for the first three
stages (r = 0.63–0.85, p < 0.05), except for the Suunto
watch during the first stage (r = 0.30, p = 0.22). The
MAE, MAPE, and RMSE for all running intensities
are presented in Table 2. For the Garmin watch, the
underestimated value of EE during the first stage was
significantly different (p = 0.01) from the EE measured
by the criterion measure. In contrast, the Suunto
Ambit2 significantly overestimated EE during stage 1
(p = 0.002) and stage 2 (p = 0.003). In Fig. 1, the data
of each tested watch and the reference method are
presented using Bland-Altman plots. For the low to
moderate running intensities overall, the mean bias
(±1.96 SD) was 1.99 (−1.56; 5.54) kcal/min for the
Suunto Ambit2, −0.85 (−3.73; 2.04) kcal/min for the
Garmin Forerunner920XT, and −0.18 (−2.77; 2.41)
kcal/min for the Polar V800 (Fig. 1). No systematic
errors were observed during the low to moderate in-
tensity running, except for the Suunto Ambit2 during
stage 1 (p = 0.004; Fig. 1).

EE estimation during high-intensity running
The Pearson’s correlation analysis revealed significantly
correlated data between the reference values and the
values from each watch at every stage (r = 0.72–0.82,
p < 0.001). During the last two stages (90% vVO2peak and
110% vVO2peak), the EE values from all the watches were
significantly lower compared to the EE values measured
by the criterion measure (all p < 0.001; Table 2) and this
underestimation grew as the running intensity increased.
In Fig. 1, a proportional error leading to a greater EE
underestimation as the running speed increased is re-
ported. The Suunto watch displayed a mean bias (±1.96
SD) of −5.51 (−12.41; 1.38) kcal/min, the Garmin device
of −8.48 (−15.18; −1.78) kcal/min, and the Polar device
of −6.79 (−12.85; −0.73) kcal/min.

Discussion
EE estimation during low and moderate intensity running
The results of this study demonstrated near acceptable
validity based on the MAPE for two of the three sports
watches, the Polar V800 and the Garmin Forerun-
ner920XT, during the moderate running stages, with the
Polar V800 presenting as the most valid and accurate
watch of the three compared devices (Fig. 1). The Gar-
min and Polar sports watches performed best during
stages 2 and 3, during which the smallest MAPE values
were observed (17.59% and 11.54% vs. 11.43% and
10.09%, respectively). The EE values of the Polar watch
did not differ statistically from those of the criterion
measure during the slowest two stages, 30% and 50%
vVO2peak. However, the MAPE of 22.76% and 11.43%
were greater than the previously defined range of 10%
deviance from the criterion measure [11, 31]. The
Garmin Forerunner920XT significantly underestimated
the EE during the slowest stage (p = 0.01). On the con-
trary, the Suunto Ambit2 significantly overestimated EE
during stages 1 and 2 (p = 0.002 and p = 0.003, respect-
ively). During stage 3, no statistical difference was ob-
served between the values provided by the Suunto watch
and the criterion measure, however the MAPE of

Table 1 Total energy expenditure measured per device including HR and speed per stage

30% vVO2peak 50% vVO2peak 70% vVO2peak 90% vVO2peak 110% vVO2peak

Criterion measure [kcal/min] 3.89 ± 0.94 7.84 ± 2.05 11.72 ± 2.70 16.95 ± 4.09 21.07 ± 4.76

Suunto Ambit2 [kcal/min] 5.17 ± 1.25* 10.60 ± 3.14* 13.65 ± 2.18 12.97 ± 2.25* 14.02 ± 2.08*

Garmin Forerunner 920XT
[kcal/min]

2.89 ± 0.81* 7.39 ± 2.48 10.63 ± 2.42 10.38 ± 2.27** 10.67 ± 2.84**

Polar V800 [kcal/min] 4.32 ± 1.20 7.45 ± 1.81 11.15 ± 2.50 11.75 ± 2.70* 12.70 ± 3.08**

HR [bpm] 99.84 ± 17.95 129.24 ± 20.30 150.80 ± 12.54 167.34 ± 7.81 176.35 ± 7.66

Speed [km/h] 4.69 ± 0.69 7.83 ± 1.15 10.93 ± 1.62 14.05 ± 2.07 17.06 ± 2.28

Values are expressed as mean ± standard deviation
vVO2peak speed at maximal oxygen uptake, HR heart rate, bpm beats per minute
*significantly different from criterion measure (p < 0.05)
**significantly different from criterion measure (p < 0.001)
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21.32% was greater than the acceptable error margin.
Despite the fact that all the watches used similar individ-
ual information regarding weight, height, and HRmax,
each device used a different algorithm, thus explaining
the slight differences between the watches. A recent
study reported increased accuracy in EE estimation

when running speed was included in the equation [12].
As the running in the present study was performed on
an indoor treadmill, the signal of the global positioning
system (GPS) was not fully reliable. Further, due to the
previously mentioned EE estimation algorithm non-
disclosure of each company, it is unclear if and how

Table 2 Concurrent validity (tested device vs. criterion measure) of the three sports watches
30% vVO2peak 50% vVO2peak 70% vVO2peak 90% vVO2peak 110% vVO2peak

Mean difference [%]

Suunto Ambit2 38.09 ± 42.06 36.29 ± 20.57 19.16 ± 18.03 −21.62 ± 12.54 −31.85 ± 10.54

Garmin Forerunner920XT −25.16 ± 16.09 −4.87 ± 29.34 −8.83 ± 10.50 −37.94 ± 8.82 −49.30 ± 9.18

Polar V800 12.20 ± 21.65 −3.61 ± 15.04 −4.29 ± 12.02 −29.98 ± 9.68 −39.52 ± 8.89

MAE [kcal/min]

Suunto Ambit2 1.46 2.75 2.32 4.15 7.05

Garmin Forerunner920XT 1.05 1.28 1.39 6.56 10.40

Polar V800 0.86 0.89 1.21 5.20 8.37

MAPE [%]

Suunto Ambit2 41.93 36.30 21.32 23.05 31.85

Garmin Forerunner920XT 26.28 17.59 11.54 37.94 49.30

Polar V800 22.76 11.43 10.09 29.98 39.52

RMSE [kcal/min]

Suunto Ambit2 1.82 3.27 2.74 4.88 7.81

Garmin Forerunner920XT 1.22 1.98 1.77 7.05 10.81

Polar V800 0.93 1.26 1.67 5.75 8.81

Results are expressed as mean ± standard deviation
vVO2peak speed at maximal oxygen uptake, MAE mean absolute error, MAPE mean absolute percentage error, RMSE root mean square error

Fig. 1 Bland-Altman plots for Suunto Ambit2, Garmin Forerunner920XT, and Polar V800. Presented in groups for low to moderate running
intensities (30%, 50%, and 70% vVO2peak) and high-intensity running (90% and 110% vVO2peak). The mean bias is marked as a solid black line,
and ±1.96 times standard deviation as dashed black lines. vVO2peak: speed at maximal oxygen uptake
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measured (GPS or accelerometer based) running speed
was included in the watches EE algorithm. Spierer and
colleagues [13] validated an accelerometer and HR-based
device (Actiheart, CamNtech Ltd., Cambridge, United
Kingdom) and reported a MAPE of 41%, 17%, and 24%
for EE estimations based on accelerometer, HR, and
combined accelerometer/HR data, respectively. The
smallest MAPE was observed for the algorithm using
HR only. Despite the similar approach used for estimat-
ing EE, only running speeds from 4.0 and 7.2 km/h were
investigated in the previous study [13]. These speeds are
comparable to stages 1 and 2 in the current study.
Especially during stage 2, smaller MAPE values were ob-
served for the Polar V800 and Garmin Forerun-
ner920XT. Several other studies investigated EE
estimation in different accelerometer based devices com-
pared to indirect calorimetry as a criterion in recent
years. The smallest differences were generally observed
during moderate waking and running exercises [33–35].
Generally, the mean differences during rest, slow walk-
ing, and intermittent sport activities were, however,
greater compared to studies with HR based EE estima-
tions [13, 33, 34, 36]. Hongu et al. [10] examined wrist
worn sports watches from Garmin and Polar reported
significant differences in EE estimations and poor reli-
ability compared to the values provided by the criterion
measure at speeds of 7 km/h. However, only speeds from
slow to brisk walking were investigated, and the cri-
terion measure was accelerometer-based; therefore,
the comparison to the current study is limited, des-
pite the fact that similar types of sports watches were
investigated. A recent study that investigated EE mea-
sures of seven different wrist-worn devices during
walking and running speeds from 4.0 to 11.1 km/h
reported MAPE between 25 and 35% [37]. These re-
sults were greater than the values for the Polar V800
and Garmin Forerunner920XT in the present study,
as the EE values given by Garmin and Polar watches
did not significantly differ (p > 0.05) from those given
by the criterion measure at lower speeds from 7 to
11 km/h. A reason for the improved results in the
current study is likely a consequence of the ongoing
efforts of the manufacturers and developers to im-
prove the applied EE algorithms.

EE estimation during high-intensity running
The greatest MAPE values (range 29.98–49.31%) were
reported for the two most intense running stages 4 and
5, with the exception of the Suunto Ambit2 (see Table 2).
For the Suunto watch, the MAPE values for the five
stages ranged between 21.32–41.93%, with the smallest
value observed for the stage 3. Hence, the accuracy of
EE estimation by the Suunto Ambit2 must be regarded
with caution, as it overestimated EE during low to

moderate intensities and underestimated EE at higher
intensities. The RMSE results were similar to the MAE
values for all watches and running intensities (Table 2).
Therefore, it can be concluded that the errors did not
differ greatly between the participants, and the devices
seem to perform consistently when used by different
runners [31]. The Bland-Altman plots of the two high-
intensity running stages showed a similar proportional
error in all three sports watches. The more intense the
activity, the greater the underestimation of EE in the
Suunto, Garmin, and Polar watches (Fig. 1). This
confirms the findings of previously published validation
studies that included running stages at high speeds up to
17 km/h and reported that a proportional error was ob-
served with increasing exercise intensity [26, 27, 38].
Koehler et al. [26] performed a treadmill running valid-
ation study with trained participants and observed a
MAPE of up to 36% in EE estimation with an
acceleration-based device worn on the upper arm. Al-
though the reported MAPE is comparable to those of
the current study, the devices used different approaches
to estimate EE: the devices by Koehler et al. [26] used
acceleration and heat flux, while the devices in the
present study are HR-based, with an unknown contribu-
tion of accelerometer data. The same device was vali-
dated in another study on daily life activities; an overall
MAPE value of 9% was observed [11]. However, Lee et
al. [11] presented no data for solely walking or running,
and therefore the comparison with the present study is
limited. Generally, previously published studies using
wearable devices reported acceptable to good validity
with regard to EE values at rest and during activities of
low to moderate intensity or at speeds below 10 km/h.
However, accuracy decreased and MAPE increased as
the intensity of the activities performed increased [13,
26, 27, 38].
The current study’s results showed that the EE estima-

tion formulas used in the Suunto Ambit2, Garmin
Forerunner920XT, and Polar V800 sports watches are
inaccurate at high intensities that correspond to com-
bined aerobic and anaerobic metabolism with larger
parts of the aerobic metabolism. Therefore, sports watch
developers must improve the existing algorithms to
counteract this estimation error. Especially, because cer-
tain users of such devices, e.g. elite athletes and coaches,
are very interested in accurate and valid data from the
most often used devices during their daily training
sessions. A possibility might be trying to detect or
estimate the anaerobic threshold and using a different
algorithm to calculate EE from thereon. However, it is
not possible to recommend general thresholds from the
current study setting. Furthermore, the accelerometer
implemented in the newest generation of sports watches
might be of added value when used to correctly detect
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high-intensity exercise bouts. However, previous re-
search reported slightly decreased EE estimation accur-
acy when implementing additional measures such as
accelerometer data to the existing HR-based algorithm
[13]. From a nutritional viewpoint, an underestimation
of EE in these devices is preferable for participants trying
to lose weight, as food intake should not surmount the
amount of energy spent on activities and rest. However,
only few validation studies examining high-intensity ac-
tivities or running at high speeds have been published.
Yet, endurance athletes’ training sessions usually consist
of low, moderate, and intense bouts and therefore an ac-
curate estimation of EE is necessary across the full inten-
sity range. Hence, the use of these sports watches is
currently not recommended for athletes trying to moni-
tor training intensity through EE.

Strengths and limitations
A positive point of the current study is that the volun-
teer participants were all trained athletes who were able
to perform the running stages at or above their VO2peak.
Moreover, the running speeds chosen for the five stages
ranged from low to supramaximal intensities, hence the
three sports watches were tested across a broad range.
This is especially important for endurance athletes wish-
ing to use EE to categorize their training intensity. A
limitation of the current study is that the MAOD
method assumes a linear relationship between running
speed and oxygen uptake; this assumption has been
challenged before. By assuming a linear relationship at
higher intensities, the MAOD might be underestimated
as the relationship might become curvilinear [39, 40].
Furthermore, comparisons between studies that use
different procedures to estimate the oxygen consump-
tion and intensity relationship are limited. Determin-
ation of MAOD is influenced by the testing procedure
and was shown to have a relatively poor reproducibility
[41, 42]. These disadvantages of MAOD have to be
acknowledged when interpreting the current results.
However, due to the lack of valid and reliable alterna-
tives, it is currently considered the most feasible method
to non-invasively assess anaerobic contributions during
intense performance [28]. As every subject performed
each stage only once, no reliability measurements could
be calculated. However, such data would add value when
describing the accuracy of these devices. Finally, only
running was investigated, and therefore the results of
the current study cannot be generalized for other endur-
ance training methods.

Conclusions
To conclude, the findings of the present study indicate
that the accuracy of the EE estimations provided by the
commercial sports watches currently available from

Suunto, Garmin, and Polar is intensity-dependent.
According to Lee et al. [11] and Nelson et al. [31], MAPE
of ≤10% are acceptable for an accurate measurement.
Only the Polar V800 met this restriction during the mod-
erate running stage 3 and came close to it during stage 2
with MAPE of 10–11% compared to the criterion meas-
ure. Followed by the Garmin Forerunner920XT during
stage 3 with a MAPE of 12%. In contrast to the Garmin
and Suunto watches, the Polar device did not significantly
differ from the criterion measure during any of the first
three running stages. However, all three sports watches
significantly underestimated EE during the high inten-
sities, with a proportional error increasing as the running
speed increased. Hence, the formulas for EE estimation
have to be improved to correctly assess the increased EE
demands during intense activities.
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